“ - -
L J
& = .' - %
(] ®
.) ~ ® @
(N - e (]
®
® @ -
- - g e L]
L
® L e °
@ 7 9. #
® p o -
~ = f, ’
.“ ‘e
o.. o J '.
» b 2 ..,

Mahcnous Network Data Analysis
< Using Open-Source Tools

Olivier Bilodeau
Cybersecurity Research Director

GoSecure
@obilodeau

#GOSEC

https://github.com/join
https://data-workshop.gosec.co/

#GOSEC

Lab Outline é:\"O
re
X

« Section 1 - Contextual Information (~15 minutes) ed/’ .

- Section 2 - Pcap analysis and data extraction (~40 minutes) IOI) //
Lab O - Introduction to Jupyter Notebook e

Lab 1 - Explore with Wireshark and extract with Tshark (Wireshark's command-line
interface)

Lab 2 - Scale Pcap data extraction with GNU parallel

15-minute break

- Section 3 - Data manipulation and graphs (~50 minutes)

Lab 3 - Manipulate dataframes with network traffic with Pandas
Lab 4 - Graph data using hvplot

[]GOSECURE

#GOSEC

Who am I?

Olivier Bilodeau

- Cybersecurity Research
Director at GoSecure Inc.

- Hacker Jeopardy host for the
NorthSec Conference and
CTF

- International public speaker
at events like RSAC, BlackHat
USA, SecTor, HackFest, etc.

[]GOSECURE

#GOSEC

The Workshop’s Principles

- Be respectful: do not hack the environment
- Ask questions
- Collaborate

- Have fun!

[]GOSECURE

#GOSEC

Disclaimer and Copyright

This presentation is part of a workshop conducted by GoSecure Inc.

Permission to reprint/republish this material or to reuse any part of

this work (outside of your own organizations) must be obtained from
the authors.

This material including associated Pcaﬁs and traffic logs are
. If you are not familiar with the Traffic Light Protocol you
can read about it here: https://www.us-cert.gov/tlp. Code samples

are under the simplified BSD license and may be re-used without
permission.

For further information or clarification, please contact
obilodeau@gosecure.net.

[]GOSECURE

https://www.us-cert.gov/tlp
mailto:obilodeau@gosecure.net

#GOSEC

For years, we have investigated

The Linux/Moose |oT Botnet

Linux/Moose
Bothet

That conducted social media fraud : mainly likes and follows online!

[]GOSECURE

#GOSEC

d

Linux/Moose
Bothet

)

Stealthy

& O

Constantly No direct
adapting victims

Buy

1900
R

Hiding in
plain sight

O

Large potential
profitability

[]GOSECURE

The Linux/Moose Botnet in 2016

#GOSEC

7 - '
/ / 4 Pk {
V) = '
— -
g7 Customer facing sellers

Residential proxy services
/3 Z | |l
|

=

[]GOSECURE

#GOSEC

Today

We take a step back...

= Start by explaining the honeypot infrastructure and the data
collected on the Linux/Moose botnet

= Analyze some of the traffic together

[]GOSECURE

#GOSEC

All this with open-source tools !

D
}"’
ol
Vék

ANACONDA
R
B N |
Z Jupyter Efl piotly |l pandas
GNUparallel hvPlot

[]GOSECURE 12

0x1C_mips bfc2a99450977dc7ba2ec0879fbl7c612e248ece (g

[T SR % T AT S T T T % T T S T % T ST e T T R 6 T T T T S T S T S T S T T T % T S T % T N T

:8FB0Oh:
t8FC0h:
:8FD0h:
:8FED0Oh:
:8FF0Oh:
:50000:
:5010h:
:50200:
:9030h:
:5040h0:
:50300:
: 50600
:20700:
:5080h0:
:50%0h:
:50RA0N:
:50B0h:
:90C0h:
:20D00:
:B20EOh:
:50F0h:
:5100h:
:5110h:
:5120h0:
:2130h:
:5140h:
:921350h:
:91e0h:
:2170h:
:21380h:
:2130h:
:51A0N:
:51B0h:

12
7
34
6E
ao
2D
04
30
&3
&F
2F
47
3F
43
77
o4
70
31
&3
6C
2F
2F
73
ao
73
od
31
34
4iE
ao
a3
2F
20

6EF
T2
20
20
20
&3
&3
a7
&C
T4
70
43
70
54
7
43
20
2
20
6o
&3
&8
&8
00
T2
2F
2E
20
6EF
Q0
21
62
20

72
6F
0o
66
0o
20
68
6F
61
20
72
54
3D
54
77
6F
41
37
0o
6E
74
6F
0o
oo
&0
72
33
AF
20
oo
LB
69
0o

Qo
&E
Qo
&1
Qo
22
&D
3.2
&E
65
&F
20
23
30
2E
&E
&C
2E
Qo
&3
&3
&D
Qo
oo
759
&3
Qo
4B
73
Qo
0
&E
Qo

TO
6y
T3
65
TO
48
6EF
6
33
6EF
63
2F
64
2F
a7
6E
65
30
2F
00
2F
65
2F
2F
2F
00
25
00
TE
23
03
2F
00

&l
ao
74
6C
73
33
od
44
ao
73
2F
78
26
31
&3
&3
76
2E
70
ao
&9
2F
&3
&3
78
ao
od
ao
&E
od
a1
s
ao

T3
Q0
&8
&3
oD
&
oD
00
20
6E
&3
78
BE
2E
T4
&3
&3
30
T2
Q0
6E
&8
T4
T4
20
Q0
20
Q0
&3
20
Ad
&8
T4

T3
oo
63
64
(13
4C
(13

oo g

0o
64
70
2F
3D
31
63
74
oD
2E
&F
0o
69
69
63
63
0o
0o
0o
0o
0o
25
co
0o
40

6F
61
74
00
63

&
00

6E
64
04
6EF
6EF
oD
00
2F
65
2E
2F
63
63
65
20
TE
6E
6l
20
01
63
00

T2
73
69
oo
a8
aF
oo

ad
28
48
ac
aE
04
oo
23
ac
ad
73
T2
T2
74
32
73
aF
ad
23
AR
oo
oo

od
T3
&3
2a
aF
32
2a

&3
&0
aF
2E
IA
2a
Q0
T3
&
2F
T4
aF
aF
&3
2E
20
B2
20
o4
Ca
2a
20

&9
&F
74
&8
20
44
33

70
23
74
&F
iB
&F
70
&3
23
&3
12
74
2E
12
36
&E
ao
&E
ao
ao
78
ao

T3
T2
65
oD
6E
22
6

68
64
3R
6D
65
0o
72
6D
73
53
74
61
68
63
38
65
00
65
00
0o
69
0o

20
a4
aF
0&
20
oo
4

70
20
20
oD
65
0o
6F
&4
0o
0o
2E
62
6F
2E
2E
74
0o
74
0o
0o
74
01

ror.password 1is
wrong...password
:...uthenticatic
n failed....sh..
+22.p8..8cho -n
—-e "H31LOWoR1D™.

elan3...chmod: n
ot found....cat
/proc/cpuinfo...
GET /xx/rnde.php
Tp=td&f=%d&m=%d
HTTP/1.1..Heost:
WWw.getcool.com.

Joonnection: Eee
127.0.0.1.../pro
C.../proc/%s/cmd
line....kill %s.
jetc/init.d/rcs.
Jhome/hik/start.
sh../etc/crontab
..../etc/cron.ho
urly/x.. /etc/rc.
dirc....122.168.
1.3.%d..5ys init
: OK....-nobg...
No sync.Bad init
coa.td Fd Fd....
R
/bin/sh.-c..exit
0....E0...

in

|

#GOSEC

Linux/Moose in a Nutshell

« Affects routers / Internet of Things (loT)
Embedded Linux systems with busybox userland

= Worm-like behavior
Telnet credential bruteforce

= Payload: Proxy service
SOCKSv4/v5, HTTP, HTTPS

= Used to proxy traffic to social media sites

[]GOSECURE

#GOSEC

Linux/Moose in a Nutshell

Timeline
= November 2014: Discovery by ESET

Early 2015: Thoroughly reversed-engineered
May 2015: Paper published

« June 2015: C&C down LinuXx/Moose

= September 2015: New version Botnet

= Back then we decided to study it via detonation in special
honeypots

httEJEN%\%WEeﬁeLs’&L%ty.com/wp-content/u ploads/2015/05/Dissecting-LinuxMoose.pdf

https://www.welivesecurity.com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf

#GOSEC

Architecture of the Honeypot

O

Honeypot

Infected host Cowrie

[]GOSECURE

#GOSEC

We set up honeypots all around the world

— T
il R o
- % -
1

Today, we give you access to that
[JGoSECURE network traffic!

network traffic

#GOSEC

How the Bots are Relaying Traffic

TCP — HTTPS

IP Metadata HTTP over TLS
(unencrypted) (encrypted and authenticated)

Proxy client Infected host '!'argetecl
social network

0

— SOCKS PROXY
End-to-end virtual
tunnel (unencrypted)

[]GOSECURE

Workshop Time!

#GOSEC

Dataset and Procedure

Dataset: a few days of the traffic gathered in the Singapore and
Frankfurt honeypots!

= Section 2 - Pcap analysis and data extraction
Lab O - Introduction to Jupyter Notebook
Lab 1 - Explore with Wireshark and extract with Tshark (Wireshark’s command-line interface)
Lab 2 - Scale Pcap data extraction with GNU parallel

- Section 3 - Data manipulation and graphs

Lab 3 - Manipulate dataframes with network traffic with Pandas
Lab 4 - Graph data using Rletly-(hvplot)

[]GOSECURE

#GOSEC

But first!

Familiarize yourself with the environment!
https://data-workshop.gosec.co

TODO List
Login (via your GitHub account)
Open a Notebook
Download a Pcap (in workshop/pcaps/)
Optional: Download the slide deck (in workshop/)

Optional: Open a Terminal

Once most of you connected, we will move on to the next section.

[]GOSECURE

https://data-workshop.gosec.co/

Pcap analysis and data extracti

Lab 0 - Intro to Jupytei; Notebook .

(|

#GOSEC

Jupyter Notebook

Perform server-side computing with a Web Ul
Convenient Python and Shell bridge

Data is in an environment ready for data analysis

[]GOSECURE

#GOSEC

Jupyter Notebook

= Run all the cells from the “labs/Lab O - Intro to Jupyter
Notebook.ipynb” notebook

https://data-workshop.gosec.co

= Hurry here! The solution will be demonstrated shortly.

= Here are resources to learn more:
How to Use Jupyter Notebook in 2020: A Beginner’s Tutorial
Tutorial: Advanced Jupyter Notebooks

[]GOSECURE

https://data-workshop.gosec.co/
https://www.dataquest.io/blog/jupyter-notebook-tutorial/
https://www.dataquest.io/blog/advanced-jupyter-notebooks-tutorial/

| A
Pcap analysis and data extre ct

\

o U
N =
T
N AW
I
) i ‘ \
\

Lab 1 - Explore with Wireshark amtsc.qle with l

#GOSEC

Initial Packet Capture Analysis

A reminder of Wireshark’s important features
= Protocol Hierarchy

Conversations

Follow TCP Stream

Decode As

Prepare 3 Fllter Important IP Addresses!
- Frankfurt 139.162.186.49

- Singapore 139.162.52.243

[]GOSECURE

#GOSEC

Your Assighnment 1.1

» Linux/Moose is an loT worm which attempts to self-replicate
using Telnet, communicates with a C&C, and its payload is to

proxy traffic.

= Open the moosehive _cn_01_00200... pcap in Wireshark and try
to identify each type of traffic.

« https://data-workshop.gosec.co

Pcap files are in the workshop/pcaps/ directory of the Jupyter Notebook environment.

[]GOSECURE

#GOSEC

Automating Your Analysis with Tshark

= Tshark is the command-line tool that is part of the Wireshark suite. It uses the same engine
and filtering language.

= To view all possible fields

tshark -G
= To extract to a CSV file (Tab separated)
tshark -T fields -e ip.src -e socks.dstport -r "pcapfile” -Y "(display filter)" > output.csv

= You can apply a “Decode As”

-d tcp.port==12345,socks
Protip: Build your query using Wireshark then apply as a tshark display filter

[]GOSECURE

#GOSEC

Combining Tshark with Jupyter Notebook

g Crzeﬁte a more maintainable pcap data analysis pipeline than using a
she

It documents the commands in a durable form
And it is executable!

Other possible advantages include:

o Youhcan avoid creating temporary files and load results directly in
Python

- Perform the computing on server with more resources instead of
your desktop

- Take advantage of data locality

[]GOSECURE

#GOSEC

Your Assignments 1.2, 1.3 and 1.4

= Run all the cells from the “labs/Lab 1 - Explore with Wireshark
and extract with Tshark.ipynb” notebook

= Do it from our lab environment:

= https.//data-workshop.gosec.co

[]GOSECURE

https://data-workshop.gosec.co/

#GOSEC

Hints for 1.2

- As seen in assighnment 1.1, C&C check-ins are done over HTTP
and the data is encoded in fake PHPSESSID cookies.

- You want to filter out as much of the unneeded packets as
possible

Build a precise filter containing only the packets with the fields you want

- Human readable timestamps make it easier to deduce time
deltas

[]GOSECURE

#GOSEC

Hints for 1.3

- To force a specific dissector to apply to a non-standard port (like
“Decode As”) use:

-d tcp.port==20012,socks

- Only the first connect packet seems to have the proper
“socks.dst” information (might be a wireshark bug)

tcp.seq can help you here

[]GOSECURE

#GOSEC

Hints for 1.4

- TLS before version 1.3 has plaintext metadata
You looked at the Server Name Indication extension?

[]GOSECURE

#GOSEC

1.1 Basic Exploration with Wireshark

Solution Demo

- Scanning behavior
. C&C

- Honeypot traffic

- Proxy traffic

L
1 Wireshark - Protocol Hierarchy Statistics - moosehive_cn_01_00200_20160828183344.pcap x
Protocol + Percent Packets Packets Percent Bytes Bytes Bits/s End Packets E

~ Frame 100.0 224496 100.0 27008331 2,500 0 ¢f
~ Ethernet 100.0 224496 1.6 3142944 291 0 C
= Internet Protocol Version 6 1.3 2889 0.4 15560 10 0 C
Internet Control Message Protocol vé 1.3 2889 0.7 184896 17 2889 1
= Internet Protocol Version 4 96.7 217008 16.1 4340160 401 0 C
» User Datagram Protocol 0.3 644 0.0 5152 0 2 1

Transmission Control Protocol 94.7 212676 69.1 18662506 1,728 192897

Transport Layer Security 2.4 5311 20.5 5550014 513 5108 L
J Telnet 41 9257 3.4 904894 83 9257 g
» Socks Protocol 2.2 5000 8.6 2312731 214 1104 1
Malformed Packet 0.0 2 0.0 0 0 2 C

* Hypertext Transfer Protocol 0.2 362 1.3 337704 A 194 g |

3 Line-based text data 0.1 168 0.1 29736 2 168 il |
1 Data 0.0 2 0.0 3499 0 2 3
Internet Control Message Protocol 1.7 3748 0.9 234378 N 3748 P
Address Resolution Protocol 2.0 4599 0.6 169722 15 4599 1

[]GOSECURE

#GOSEC

1.2 Solution

) Jupyter Lab 1 - Solution - Explore with Wireshark and extr... pemiere Sauvegarde :ily a 4 minutes (auto-sauvegarde) fa

Logout | Control Panel
File Edit View Insert Cell Kemel Widgets Help Fiable Python 3 O
B+ 8 @& B 4+ ¥ PExeouer B C W | makdown v =

Assignment 1.2

The infected host will periodically communicate with it's C&C server. Can you figure out how often it does so?

Demo in the Jupyter Notebook!

Supported fields can be found by looking at Wireshark's Display Filter Reference documentation or by running tshark -G in a terminal.

Entrée [1: M | !tshark -r '/home/jovyan/workshop/pcaps/moosehive cn 01 08200 20160828183344.pcap' \
-T fields -e frame.time _epoch -e ip.src -e ip.dst -e http.host \
-Y 'http

There are many ways to achieve this but using frame.time and filtering on PHPSESSID or on C&C IP addresses is effective.

Entrée []: M | !tshark -r '/home/jovyan/workshop/pcaps/moosehive cn 01 00200 20160828183344.pcap' \

- tSha rk -r llone pca p” [T Tlelds -e frane;tlne & ip;src -e dp.dst -¢ hetp-host 3
= -Y 'http contains "PHPSESSID™

= -T fields -e frame.time -e ip.src -e ip.dst -e http.host
Human readable timestamps

[]GOSECURE

#GOSEC

1.3 Solution

Demo in the Jupyter Notebook!

" Jupyter Lab 1 - Solution - Explore with Wireshark and extract wit... pemiere Sauvegarde : ily a5 minutes (modifié) @9 Logout Control Panel
File Edit WView Insert Cell Kemel Widgets Help Fiable | Python 3 O
B + = & B 4+ 4 PExccuter WM C W Markdown v | B

Assignment 1.3

To study this traffic even more it would be nice if we could exiract information about the proxied traffic. First lets extract the socks proxy requests and log the
destination IP of the socks traffic.

Entree []: M !tshark -r '/home/jovyan/workshop/pcaps/moosehive cn 01 00200 20160828183344.pcap' \
-T fields -e frame.time epoch -e ip.src -e ip.dst -e http.host 3\
-Y 'tecp.port==20012"

Solution 1.3

Solution below. Additionally, if we do a whois lookup of some of these IP we instantly recognize some important brands.

Entréee []: M !tshark -r '/home/jovyan/workshop/pcaps/moosehive cn 01 00200 20160828183344.pcap' \
-d tcp.port==20012,s0cks -T fields -e frame.time epoch -e ip.src -e ip.dst -e socks.dst)\
-Y 'socks.command == 1 and tcp.seq == 1°'

[]GOSECURE

1.4 Solution

: Jupyter Lab 1 - Solution - Explore with Wireshark and extract wit... Demiére Sauvegarde : il ya 5 minutes (modifié) ﬁ
D * h J File Edit
= PDemo In the Jupyter

Logout Control Panel
View Insert Cell Kernel Widgets Help F
EEE

Fiable | Python 3 ©
st @ B 4+ & pExecuter M C W Markdown v =
Notebook!

-d tcp.port==20012,socks -T fields -e frame.time epoch -e ip.src -e ip.dst -e socks.dst \
-Y 'socks.command == 1 and tcp.seq == 1'
Assignment 1.4

Can we extract TLS metadata that would allow us to get a more precise understanding of the intended traffic target?
Entrée [1: M

'tshark -r '/home/jovyan/workshop/pcaps/moosehive cn 01 08200 20160828183344.pcap' \
-T fields -e frame.time epoch -e ip.src -e ip.dst \
-Y 'tls’

Solution 1.4

Filter on TLS client handshake { t1s.handshake.type 1) and extract server name extension (tls.handshake.extensions server name):
Entrée [1: M

'tshark -r '/home/jovyan/workshop/pcaps/moosehive cn 01 00200 20160828183344.pcap' \
-T fields -e frame.time_epoch -e ip.src -e ip.dst -e tls.handshake.extensions_server_name \
-Y 'tls.handshake.type == 1°

Bonus

Here is some filtering code to keep unique domains. Just fix the tshark command with the right parameters from your last solution.
Entrée [1: M proxy_dest = !tshark -r '/home/jovyan/workshop/pcaps/moosehive cn_01 00200 20160828183344.pcap' \
-T fields -e frame.time_epoch -e ip.src -e ip.dst \
-Y 'tls!

proxy_dest_domains = {}

for _dst in proxy dest:
_epoch, _srcip, _dstip, domain = _dst.split("\t")
fill dict with domain name as key, duplicates will overwrite each other
proxy dest domains[domain] = 1

turn dict into a list

domains = [key for key, val in proxy dest domains.items()]
sorted(domains)

[]GOSECURE

| N
o / " L
Pcap analysis and data extre Ct T

Lab 2 — Scale Pcap data extraction\wfth GN |

#GOSEC

Group Assignment 2.1

- Jupyter Lab 2 - Scale Pcap data extraction with GNU parallel (auto-sauvegarde)

File Edit View Insert Cell Kernel Widgets Help

= Together we will run all the +[[8][+ [o][> sew [¢ » o T
CE”S from the ”labs/l_ab 2 _ Multi-core xargs: GNU parallel

Can we go faster? Yes by spreading the tshark jobs on several cores using GNU parallel. Below is the solution. It is bui
S | P d . and failures using it.
cdle FCap ata extraction rtrée (21 AT
: : ” socks dest = !find "/home/jovyan/workshop/pcaps/" -name "*.pcap" | \
WI pa ra e o I pyn parallel --max-args 1 --jobs 80% --load 100% --memfree 2G --retries 3 --g

tshark -d tcp.port==20012,socks -r \{\} -T fields -e frame.time epoch -e
-Y 'socks.command == 1 and tcp.seq ==

nOte bOOk tls dest = !find "/home/jovyan/workshop/pcaps/" -name "*.pcap" | \

parallel --max-args 1 --jobs 80% --load 100% --memfree 2G --retries 3 --g
tshark -r \{\} -T fields -e frame.time epoch -e ip.src -e ip.dst -e tls.h
-Y 'tls.handshake.type == 1'

CPU times: user 6.05 ms, sys: 12.1 ms, total: 18.1 ms
wall time: 1min 32s

Entrée [3]: # Write files to disk
with open('/home/jovyan/work/socks-handshake.csv', 'w') as _f:
for line in socks dest:
_f.write(line + "\n")

with open('/home/jovyan/work/tls-handshake.csv', 'w') as f:
for line in tls dest:
_f.write(line + "\n")

= Do it yourself from our lab environment:

https://data-workshop.gosec.co
[]JGOSECURE '

https://data-workshop.gosec.co/

Data manipulation and graphs

Lab 3 — Manipulate dataframes with networ raf /
Pandas st

#GOSEC

Lab 3 — Manipulate dataframes with network traffic with Pandas

What is Pandas?

“an open source, BSD-licensed library providing high-performance,
easy-to-use data structures and data analysis tools for the Python
programming language.”

|h|pandas

[]GOSECURE

#GOSEC

Lab 3 — Manipulate dataframes with network traffic with Pandas

1. We will load two CSVs created with tshark
2. We will merge the two CSVs and create one large clean dataframe
3. | will show a few tricks using Pandas

4. You will be given some questions to answer!

Useful documentation:

https://pandas.pydata.org/ .
jupyter

Lab 3 - Manipulate Dataframes with Network Traffic using Pandas

[]GOSECURE

Solution

Demo and a Jupyter
notebook including the
lab’s solution will be
provided in the
participants’ virtual
environments

[]GOSECURE

#GOSEC

j Jupyter Lab 3 - Solution - Manipulate Dataframes with Net... pemiere Sauvegarde : il y a 4 minutes (auto-sauvegarde) 'a Logout | Control Panel

File Edit View Insert Cell Kemel Widgets Help F # |Python3 O

B |+ & @& B 4 ¥ PExccuter B C| MW | code v | =

Lab 3 - Solution - Manipulate Dataframes with Network Traffic using
Pandas

Lab Outline:

1. We will load the two CSVs created with tshark and merge them to create one large clean dataframe
2. | will show a few tricks using Pandas
3. You will exercise your Pandas tricks by answering some questions!

Documentation on Pandas

Licensed under the simplified BSD License. Copyright (c) GoSecure Inc.

run this box when opening the Jupyter notebook

Entrée []: M import pandas as pd
import numpy as np

directory = '/home/jovyan/workshop/data/’
1. Loading Dataframes

Read the SOCKS CSV created with tshark

Entrée []: M socks df = pd.read csv(f'{directory}socks-handshake.csv', sep='\t', header=None)
socks _df.columns = ['timestamp', 'socks src', 'socks dst', 'socks remote address’]

#Setting timestamp as a datetime object

socks_df['timestamp'] = np.array(socks df['timestamp'], dtype='datetime64[s]')

socks df.head(5

Data manipulation and graphs

Lab 4 - Graph data usil:)g hvplot

'

#GOSEC

Lab 4 - Graph data using hvplot

Lab:
1. We will go over a few tricks with hvplot
2. You will exercise with a few challenges!

Useful documentation:
ttps://hvplot.holoviz.org/
nttp://holoviews.org/user guide/Customizing Plots.html

https://hvplot.holoviz.org/user guide/Customization.html

Lab 4 - Graph data using hvplot

[]GOSECURE

https://hvplot.holoviz.org/
http://holoviews.org/user_guide/Customizing_Plots.html
https://hvplot.holoviz.org/user_guide/Customization.html

olution

: Jupyter Lab 4 - Solution - Graph data LISiﬂg th|Ot Derniére Sauvegarde : il y a 3 minutes (auto-sauvegardé)

File Edit Wiew

B+ 3 & B 4+ + peExécuter B C W parkdown v| =

Insert Cell Kemel Widgets Help

Lab 4 - Graph data using hvplot

Demo and a Jupyter
notebook including the lab’s
solution will be provided in

the participants’ virtual
environment

Entrée []:

Entree []:

[]GOSECURE

Lab Outline:

1. We will go over a few fricks with hvplot
2. You will exercise with a few challenges !

Documentation on Hvplot
General documentation, Plot Customization, Examples

Licensed under the simplified BSD License. Copyright (c) GoSecure Inc.

er notebook

s run this box when opening the Jup

M import pandas as pd
impert numpy as np

impert hvplot.pandas
import holoviews as hv
directory = '/home/jovyan/workshop/data/"

M |df = pd.read_csv('tls-socks-clean.csv')
df[*timestamp'] = np.array{df['timestamp’], dtype='datetime64[s]"')
df['date'] = pd.to_datetime(df['timestamp']).dt.date

df.head()

Basics of hvplot

Logout

#GOSEC

Control Panel

Python 3 O

M df.socks src.value counts().hvplot.bar(title='Number of Requests Source IPs', ylabel="N', xlabel='IPs"')

#GOSEC

Lab Key Takeaways

We hope that through this lab, you have learned:

- How to use Wireshark and Tshark to extract meaningful information
from malicious network traffic captures

- How to scale and self-document traffic extraction by combining
Jupyter Notebooks and Tshark

- How to efficiently graph the extracted traffic to highlight hidden
natterns using open-source Python libraries

- Network traffic investigation skills ©

[]GOSECURE

#GOSEC

One Last Word About Scalability

- What you have learned today could have been done with
Wireshark and Excel

It’s 21 days of honeypot traffic representing 3.9M packets

- Our Linux/Moose investigation ran approximately 10 honeypots
for 6 months gathering more than 2700 days of traffic

That’s approximately 500M packets

Enough to blow up Excel and a laptop’s RAM and require the more robust
and scalable tools you saw in action today

[]GOSECURE

&
e ® *
) ® @ * Y &
([9 @
® - ® [] . ® L
- ® -
@ - » 3
@ ® . [
e o ® ® o0 °
® ‘. ... ’ . -
& .. o P o %
@ @ /" . < ‘ s
° pe ® ® :. /
° " -
L J o °®
&« 4 ®
e *

Y&yrr ~<;5 Mahcnous Network Data Analysis
= e ;-.-{-..'-'- ;j-’-' Using Open-Source Tools

Olivier Bilodeau

Cybersecurity Research Director
GoSecure
@obilodeau

#GOSEC

