‘
,

History of Deserialization

RCE for the modern web applications

|

Presentation by Philippe Arteau DOVWERED BY COUNTERTAGK

Who | Am

= Philippe Arteau
= Security Researcher at [] GOSECURE

POWERED BY COUNTERTACK
= Open-source developer
= Find Security Bugs (SpotBugs - Static Analysis for Java)
= Security Code Scan (Roslyn — Static Analysis for .NET)
= Burp and ZAP Plugins (Retire.js, CSP Auditor)

= VVolunteer for the n%e conference and former trainer

GCOSECURE

= Introduction

= Deserialization
" Gadget

= Exploitation
= General methodology
= Additional tricks

= History
* Timeline of the discovery over the past 10 years

= Defense mechanisms
= Takeaways

GCOSECURE

Deserialization

GOSECURE

i

Serialization is the process of translating data
structures or object states into a format that can
be stored and reconstructed later in the same or
another computer environment.”

[Ref : Wikipedia]

GCOSECURE

https://en.wikipedia.org/wiki/Serialization

Deserialization Use Cases

System 1 System 2

\
) \(

- order_id: D6C25D Or.der
- client id: 42987 - order_id: D6C25D
_ items : [34,68,27] - client_id : 42987
\ . ’ ’))
_

items : [34,68,27]

= Storage = Network communication
= Caching = Message queue
" Inter-Process communication (Local)

GCOSECURE

How Objects Are Reconstructed

Depending on the implementation, the library or the function, it may:
" |[nitialized fields

= Call Setters (ie: setXXX or C# properties)

= Call Constructor with no arguments

= Call custom hooks intended to be called specially on deserialization

= Lifecycle methods : initialization, disposition (ie: __destruct in PHP),
etc.

Libraries do their best to minimize side effects.

GCOSECURE

Exploitation Requirements

= Unsafe deserialization must be used
= A gadget allowing remote code execution must be available
= User-controlled data must be passed to a deserialization function

GCOSECURE

Simple Example

’ Sresult = unserialize(S_GET['input']) class sql_db {
function __destruct() {

$this->sql _close();

Unsafe deserialization }

function sql _close() {

[...]
$this->createlLog();
[...]

}

function createlLog() {
$ip = $this->escape($ SERVER['REMOTE_ADDR']);
$lang = $this->escape($_SERVER['HTTP_ACCEPT LANGUAGE']);
$agent = $this->escape($ SERVER["HTTP_USER_AGENT']);
$log table = $this->escape($this->log table);

Gadget $query = "INSERT INTO " . $log table . "™ VALUES ('', '$ip', '$lang’,
"$agent’)";
- $this->sql _query($query);
}
}

GOSECURE

Specific Example: Java Native Serialization

final ObjectInputStream objIn = new ObjectInputStream(in);

Command cmd

(Command)

objIn.readObject () ;

| T—

* A class name is read from the bytestream

* The class is loaded from the name

 An object is instantiated from the class (no
constructor is called)

e Custom readObject() is called if
implemented

GCOSECURE

The Attack Surface

Entry point: (The obvious part)
= readObject()

= Setters/Getters

= Constructors

Trampoline methods: (Not so obvious)

= Java: hashcodecﬂ, equals(), Proxy and
InvocationHandler

= NET: Internal use of unsafe serializer (ie:
BinaryFormatter)

= Ruby: Internal template evaluation
= PHP: Method name collision

3 X

J - r‘ d \
) /
_
¢ 4
N

GCOSECURE

Exploitation

GOSECURE

General Method

1. Find serialized object in protocol
2. Generate a malicious payload with gadget X
3. Replace the initial object by the payload

" |f it failed, generate a new malicious payload with a different gadget
" |f it failed, transform the existing Object stream

If it still does not work, the classes might not be available or allowed
(white or blacklist)

GCOSECURE

ASP.net Exploitation

Demonstration

ysoserial.net used to generate a payload
for a ASP.net application

GOSECURE

Detection with DNS (Java)

Targeted Servers
<>

DNS Server

https://www.gosecure.net/blog/2017/03/22/detecting-deserialization-bugs-with-dns-exfiltration

https://blog.paranoidsoftware.com/triggering-a-dns-lookup-using-java-deserialization/

GCOSECURE

https://www.gosecure.net/blog/2017/03/22/detecting-deserialization-bugs-with-dns-exfiltration
https://blog.paranoidsoftware.com/triggering-a-dns-lookup-using-java-deserialization/

How to Generate “DNS” Payload Using Ysoserial

Example:

S java -jar ysoserial-0.0.5-all.jar URLDNS
http://8pygg0brnl4ofg3spss6117q1h77vw.burpcollaborator.net >
payload.bin

" JRLDNS: Gadget

= http://8pyggObrnldofg3spss6l17q1h77vw.burpcollaborator.net : URL
that will be resolved.

GCOSECURE

New PHP Exploitation Trick (2018)

= A new deserialization vector was found in PHP recently.

" |t concern user input being passed to: EHMEE—-. secarm|
= fopen() 6 9
“It's a PHP unserialization vulnerability Jim, N
- copy() ~© but not as we know it”
= file_exists()

Gam Thomas

= filesize()

It's A PHP Unserialization Vulnerability Jim, Sepnce
But Not As We Know It -
- Sam Thomas

file_exists("phar://userfile.bin")
The metadata from the PHP Archive (PHAR) is serialized

https://github.com/s-n-t/presentations/blob/master/us-18-Thomas-It's-A-PHP-Unserialization-
Vulnerability-Jim-But-Not-As-We-Know-It-wp.pdf

/ J \@ GOSECURE

\

https://github.com/s-n-t/presentations/blob/master/us-18-Thomas-It's-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-We-Know-It-wp.pdf

History of Deserialization

, \ o \
SN =P \
o o ‘.7 - - \

First Deserialization Vulnerability (CWE-502)

= CVE-2007-1701 (PHP 4.4.6)

" Double free vulnerability was found in session decode

=" The vulnerability can be triggered if register _globals is enabled or if
the application bypasses user content to the function directly

= While it affects a deserialization function, it is not representative of
the most common deserialization vulnerabilities.

GCOSECURE

First “Gadget Based” Vulnerability

= CVE-2011-2894
= Spring vulnerability discovered by Wouter Coekaerts

= One of the first “gadget-based” vulnerabilities

= The Spring team mitigate both:
= The unrestricted deserialization
= The gadget

" |t use a common pattern — Proxy + InvocationHandler — that will be reused
in most of the Java gadgets.

= http://www.pwntester.com/blog/2013/12/16/cve-2011-2894-
deserialization-spring-rce/

GCOSECURE

http://www.pwntester.com/blog/2013/12/16/cve-2011-2894-deserialization-spring-rce/

Important dates in Java Deserialization History

Look-Ahead Class POCs are published by YSoSerial — a tool Deserialization
Validation article Foxgloves Security for that generate Filtering introduce
By Pierre Ernst multiples enterprise gadget — now has inJDK 9
applications 29 different (Requires config.)
gadgets
@ 2 o
First Java Presentation at Paper publish on
deserialization AppSecCali 2015 deserialization
vulnerability about the vulnerability in
leading to RCE potential of the YAML, JSON and
found in Spring Apache Commons AMF parser.

Collection Gadget

Ref: All the articles are in the references section

|

(

GCOSECURE

Gadgets timeline in Ruby, Java, .NET and PHP

First Ruby gadget MarshalSec is released.
targeting Targeting various JSON
specifically and XML Java parser.
ActiveSupport (Moritz Bechler)
from RubyOnRails
o o ® Y P

First Java gadget Initial version of
found that could ysoserial

be use to leverage Targeting Java native
a RCE in Spring serialization with
applications Commons-Collection
(Wouter Gadget

Coekaerts) (Chris Frohoff)

Ref: All the articles are in the references section

PHP GGC is released
with gadgets in
many popular PHP
frameworks
(ambionics team)

ysoserial.net is
released.

Targeting JSON.net,
BinaryFormatter
and others parser.
(Alvaro Mufioz)

Universal Gadget
for Ruby with no
specific gem
needed

(Luke Jahnke)

GOSECURE

e w
(O :
s , m
S w O :
- k4
Q5 &5 5
O MMGSﬁ g
D :_Jrnwrm%.m 5
m_sMWJ, m
) T68gs u
S w g WX S
r Cmal_e 3
c L™ <
O = 3
- £ - :
- g
w @
U S D
O .
S o)
c 2 m
O e :
: <
0 ==——— N u
>
4 ;
(O m
N ;
© © S g
C 5 8 W
= 3 o 2
L = N S

g|0

p) B S
U L 2
523 :

> £ 2l

Rv A = 2
e o ml-l'.-—u 5
@\ : m
(@)

ﬂ‘
[
LN -
| o 5
_ R Q ..ol.ﬂ
v
i
= m

https://www.cvedetails.com/vulnerability-list/cweid-502/vulnerabilities.html

What Will Happen Next?

= Some gadgets will stop working eventually

= No gadgets are found yet in some platforms:
= NET Core
= NET on Linux (With no 3 party library)
= Universal PHP gadget
= PHP gadget for WordPress

" Frameworks and libraries will likely start to blacklist common classes
from deserialization (when possible).

GCOSECURE

Defense Mechanisms

GOSECURE

Using Safe Libraries (not error-prone

= Not all libraries are created equal
= Some libraries have strict class validation during deserialization
= Refer to paper: Friday the 13t JSON attacks (BH2017)

—

Hewlett Packard
Enterprise

Friday the 13'" JSON Attacks

Alvaro Mufioz & Oleksandr Mirosh
HPE Software Security Research

black hat

Summy fsses i deserazaton of unrusied data in severa programming languages e been nown o many

e e e o
S o e e et 1.t o St Sy =Vag=1l
for a long time. These classes could be ui'ﬂ o execute arbmaw wdu o run arbilrary processes (remale md'
untrusted data eff-quard. The publieation of the Apache Commons-Collections gadget was followed by an explosion _] | | L\(E E - E 7 E D ’I 4
of neiw rassarch on gadgets, defancs and the hunting of vuinsrable)

ok number weaio s MANDALAY BAY / LAS VEGAS
e o e S8 ot

Our research showed that the main requirements for successiul RGE attacks on unmarshalling lbraries are that
1) The. suchas setters,

callbacks, desiructors, etc.
m

2) The bythe attackerto craft hishher . t h
payloads. As wé will concluds, the format ussd for the serialzation s not relsvant. I can be binary data, text F r I a t e . tt a c S
such as XML, JSON or even custom binary formats. As long as those requirements are met, attackers may .

be able to gain code execution opportunties regardiess of the format. (With format being XML, JSON or the
classical Java and Net binary serlizers)

I this paper, we will focus on JSON libraries and we will analyze which onas could allow arbitrary code exseution

o deseaizatonof sneod data Wa wll e have ook o NET word b v el resech n s Alvaro Mufioz (@pwntester)

oo i o il proc ot e Tt
o koot o ch o 50N et :

W ulk prvie gkancs bt e whtter & o e sk nd et o ke . Wherspossbie el a0 Oleksandr Mirosh
e gk e 2 v oy waarabin

HPE Security

/appsescali-marshalling-pickles! . W =BHUSA BLACKHATEVENTS

‘endgoints.pdl

GOSECURE

Using Safe(r) Libraries

FastJSON

Json.Net

FSPickler

Sweet.Jayson
JavascriptSerializer

DataContractJsonSerializer

Jackson

Genson

Language

NET

NET

NET

NET
NET
NET

Java

Java

Type

Discriminator

Default

Configuration

Default

Default
Configuration

Default

Configuration

Configuration

Default

Expected
Object
Graph
Inspection
(weak)

Expected
Object
Graph
Inspection
(weak)

Cast

Cast

Expected
Object
Graph
Inspection
[strcng_;)

Expected
Object
Graph
Inspection
(weak)

Expected
Object
Graph
Inspection
(weak)

Cast

Vector

Setter

Setter

Deser.
Callbacks

Type
Converters

Setter

Deser.
callbacks

Setter
Setter

Setter

Deser.
callbacks

Setter

Setter

toString

= Some libraries are less error-prone

= Deserialization with user-input
should at least have graph
inspection

Taken from Friday the 13t JSON attacks paper
https://www.blackhat.com/docs/us-17/thursday/us-17-
Munoz-Friday-The-13th-JSON-Attacks-wp.pdf

GCOSECURE

https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf

Use Blacklist or Whitelist Mechanisms

= Libraries may contains configurable whitelist and blacklist
= Xstream (Java): allowTypeHierarchy, allowTypesByRegExp, ...
= JSON.net (C#): ContractResolver

= 3rd party libraries could be use to accommodate
= NotSoSerial, contrast-rO0, commons-io (class ValidatingObjectInputStream)

Some vendors — namely Weblogic — have
chosen to use blacklist[1]

[1] https://www.blackhat.com/docs/us-
16/materials/us-16-Kaiser-Pwning-Your-Java-
Messaging-With-Deserialization-Vulnerabilities-wp.pdf

& J \@ GOSECURE

\ A

https://www.blackhat.com/docs/us-16/materials/us-16-Kaiser-Pwning-Your-Java-Messaging-With-Deserialization-Vulnerabilities-wp.pdf

Takeaways

GOSECURE

= Attack tools only get better
* Frameworks and libraries also do get better
= Prefer libraries with built-in class validation

= Deserialization is a complex attack vector
= Gadgets can take quite some time to be discovered
" Once discover the exploitation becomes trivial

GCOSECURE

Questions?

Contact
N parteau@gosecure.ca
& https://gosecure.net/

/-5‘2 YW @h3xStream @GoSecure_Inc

\ AN P { N
/ .] < 7!)
-~ J ¥ ¥ =

\ 4 Q~ -\ — _~J\':_1 ™ e / 4 \ L A
N ~ o
\ \ / “x,_/’h
\ i N

\ N

GOSECURE

References

GOSECURE

Java References

= \What Do WebLogic, WebSphere, JBoss, Jenkins, OpenNMS, and Your
Application Have in Common? by Stephen Breen

= AppSecCali 2015 - Marshalling Pickles by Christopher Frohoff and
Gabriel Lawrence

= Exploiting Deserialization Vulnerabilities in Java by Matthias Kaiser

= Java Serialization Cheat-Sheet

= YSoSerial tool maintained by Christopher Frohoff

" Look-ahead Java deserialization by Pierre Ernst

= NotSoSerial java-agent for mitigation

GCOSECURE

http://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability/
http://frohoff.github.io/appseccali-marshalling-pickles/
https://www.youtube.com/watch?v=VviY3O-euVQ
https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet
https://github.com/frohoff/ysoserial
http://www.ibm.com/developerworks/library/se-lookahead/
https://github.com/kantega/notsoserial

PHP References

= hack.lu CTF challenge 21 writeup : Simple example with PHP
unserialize

= PHP magic methods
= PHP GGC

GCOSECURE

https://websec.wordpress.com/2010/10/30/hack-lu-ctf-challenge-21-writeup-pigs/
http://php.net/manual/en/language.oop5.magic.php
https://github.com/ambionics/phpggc

Ruby References

= First Ruby gadget http://phrack.org/issues/69/12.html

= Universal Ruby Gadget https://www.elttam.com.au/blog/ruby-
deserialization/

GCOSECURE

http://phrack.org/issues/69/12.html
https://www.elttam.com.au/blog/ruby-deserialization/

.NET References

= Ysoserial.net : Payload generator
https://github.com/pwntester/ysoserial.net
= Friday The 13t JSON Attack - White Paper

https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-
The-13th-JSON-Attacks-wp.pdf

= New attack vector in .NET
https://illuminopi.com/assets/files/BSideslowa RCEvil.net 20190420

GCOSECURE

https://github.com/pwntester/ysoserial.net
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://illuminopi.com/assets/files/BSidesIowa_RCEvil.net_20190420.pdf

