
History of Deserialization
RCE for the modern web applications

Presentation by Philippe Arteau

Who I Am

▪ Philippe Arteau

▪ Security Researcher at

▪ Open-source developer
▪ Find Security Bugs (SpotBugs - Static Analysis for Java)

▪ Security Code Scan (Roslyn – Static Analysis for .NET)

▪ Burp and ZAP Plugins (Retire.js, CSP Auditor)

▪ Volunteer for the conference and former trainer

Agenda

▪ Introduction
▪ Deserialization
▪ Gadget

▪ Exploitation
▪ General methodology
▪ Additional tricks

▪ History
▪ Timeline of the discovery over the past 10 years

▪ Defense mechanisms

▪ Takeaways

Deserialization

Definition

Serialization is the process of translating data
structures or object states into a format that can
be stored and reconstructed later in the same or
another computer environment.

“

”
[Ref : Wikipedia]

https://en.wikipedia.org/wiki/Serialization

Deserialization Use Cases

Order
- order_id: D6C25D
- client_id : 42987
- items : [34,68,27]

Order
- order_id: D6C25D
- client_id : 42987
- items : [34,68,27]

System 1 System 2

▪ Storage

▪ Caching

▪ Inter-Process communication (Local)

▪ Network communication

▪ Message queue

How Objects Are Reconstructed

Depending on the implementation, the library or the function, it may:

▪ Initialized fields

▪ Call Setters (ie: setXXX or C# properties)

▪ Call Constructor with no arguments

▪ Call custom hooks intended to be called specially on deserialization

▪ Lifecycle methods : initialization, disposition (ie: __destruct in PHP),
etc.

Libraries do their best to minimize side effects.

Exploitation Requirements

▪ Unsafe deserialization must be used

▪ A gadget allowing remote code execution must be available

▪ User-controlled data must be passed to a deserialization function

Simple Example
class sql_db {

function __destruct() {
$this->sql_close();

}

function sql_close() {
[...]
$this->createLog();
[...]

}

function createLog() {
$ip = $this->escape($_SERVER['REMOTE_ADDR']);
$lang = $this->escape($_SERVER['HTTP_ACCEPT_LANGUAGE']);
$agent = $this->escape($_SERVER['HTTP_USER_AGENT']);
$log_table = $this->escape($this->log_table);
$query = "INSERT INTO " . $log_table . " VALUES ('', '$ip', '$lang',

'$agent')";
$this->sql_query($query);

}
}

$result = unserialize($_GET['input'])

Unsafe deserialization

Gadget

Specific Example: Java Native Serialization

final ObjectInputStream objIn = new ObjectInputStream(in);

Command cmd = (Command) objIn.readObject();

• A class name is read from the bytestream
• The class is loaded from the name
• An object is instantiated from the class (no

constructor is called)
• Custom readObject() is called if

implemented

The Attack Surface

Entry point: (The obvious part)

▪ readObject()

▪ Setters/Getters

▪ Constructors

Trampoline methods: (Not so obvious)
▪ Java: hashcode(), equals(), Proxy and

InvocationHandler
▪ .NET: Internal use of unsafe serializer (ie:

BinaryFormatter)
▪ Ruby: Internal template evaluation
▪ PHP: Method name collision

Exploitation

General Method

1. Find serialized object in protocol

2. Generate a malicious payload with gadget X

3. Replace the initial object by the payload

▪ If it failed, generate a new malicious payload with a different gadget

▪ If it failed, transform the existing Object stream

If it still does not work, the classes might not be available or allowed
(white or blacklist)

ASP.net Exploitation

Demonstration
ysoserial.net used to generate a payload

for a ASP.net application

Detection with DNS (Java)

https://www.gosecure.net/blog/2017/03/22/detecting-deserialization-bugs-with-dns-exfiltration

https://blog.paranoidsoftware.com/triggering-a-dns-lookup-using-java-deserialization/

https://www.gosecure.net/blog/2017/03/22/detecting-deserialization-bugs-with-dns-exfiltration
https://blog.paranoidsoftware.com/triggering-a-dns-lookup-using-java-deserialization/

How to Generate “DNS” Payload Using Ysoserial

Example:

$ java -jar ysoserial-0.0.5-all.jar URLDNS
http://8pygg0brnl4ofg3spss6l17q1h77vw.burpcollaborator.net >
payload.bin

▪ URLDNS: Gadget

▪ http://8pygg0brnl4ofg3spss6l17q1h77vw.burpcollaborator.net : URL
that will be resolved.

▪ A new deserialization vector was found in PHP recently.

▪ It concern user input being passed to:
▪ fopen()

▪ copy()

▪ file_exists()

▪ filesize()

file_exists("phar://userfile.bin")

The metadata from the PHP Archive (PHAR) is serialized

New PHP Exploitation Trick (2018)

https://github.com/s-n-t/presentations/blob/master/us-18-Thomas-It's-A-PHP-Unserialization-
Vulnerability-Jim-But-Not-As-We-Know-It-wp.pdf

https://github.com/s-n-t/presentations/blob/master/us-18-Thomas-It's-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-We-Know-It-wp.pdf

History of Deserialization

First Deserialization Vulnerability (CWE-502)

▪ CVE-2007-1701 (PHP 4.4.6)

▪ Double free vulnerability was found in session_decode

▪ The vulnerability can be triggered if register_globals is enabled or if
the application bypasses user content to the function directly

▪ While it affects a deserialization function, it is not representative of
the most common deserialization vulnerabilities.

First “Gadget Based” Vulnerability

▪ CVE-2011-2894
▪ Spring vulnerability discovered by Wouter Coekaerts

▪ One of the first “gadget-based” vulnerabilities
▪ The Spring team mitigate both:

▪ The unrestricted deserialization
▪ The gadget

▪ It use a common pattern – Proxy + InvocationHandler – that will be reused
in most of the Java gadgets.

▪ http://www.pwntester.com/blog/2013/12/16/cve-2011-2894-
deserialization-spring-rce/

http://www.pwntester.com/blog/2013/12/16/cve-2011-2894-deserialization-spring-rce/

Important dates in Java Deserialization History

2011
First Java
deserialization
vulnerability
leading to RCE
found in Spring

2015 Jan.
Presentation at
AppSecCali 2015
about the
potential of the
Apache Commons
Collection Gadget

2017
Paper publish on
deserialization
vulnerability in
YAML, JSON and
AMF parser.

2013
Look-Ahead Class
Validation article

By Pierre Ernst

2015 Nov.
POCs are published by
Foxgloves Security for

multiples enterprise
applications

2018
Deserialization

Filtering introduce
in JDK 9

(Requires config.)

2016
YSoSerial – a tool

that generate
gadget – now has

29 different
gadgets

Ref: All the articles are in the references section

Gadgets timeline in Ruby, Java, .NET and PHP

2017
ysoserial.net is
released.
Targeting JSON.net,
BinaryFormatter
and others parser.
(Alvaro Muñoz)

2015
Initial version of
ysoserial
Targeting Java native
serialization with
Commons-Collection
Gadget
(Chris Frohoff)

2017
MarshalSec is released.
Targeting various JSON

and XML Java parser.
(Moritz Bechler)

2017
PHP GGC is released

with gadgets in
many popular PHP

frameworks
(ambionics team)

2013
First Ruby gadget

targeting
specifically

ActiveSupport
from RubyOnRails

2018
Universal Gadget
for Ruby with no
specific gem
needed
(Luke Jahnke)

2011
First Java gadget
found that could
be use to leverage
a RCE in Spring
applications
(Wouter
Coekaerts)

Ref: All the articles are in the references section

CWE-502: Deserialization of Untrusted Data

0

5

10

15

20

25

30

Number of CVEs over time

CVE-2015-6420
Commons Collection

Gadget Affecting
WebLogic, WebSphere,

Jenkins, Jboss…

Dataset taken from : https://www.cvedetails.com/vulnerability-list/cweid-502/vulnerabilities.html

First CVE registered
with the classification

CWE-502

https://www.cvedetails.com/vulnerability-list/cweid-502/vulnerabilities.html

What Will Happen Next?

▪ Some gadgets will stop working eventually

▪ No gadgets are found yet in some platforms:
▪ .NET Core

▪ .NET on Linux (With no 3rd party library)

▪ Universal PHP gadget

▪ PHP gadget for WordPress

▪ Frameworks and libraries will likely start to blacklist common classes
from deserialization (when possible).

Defense Mechanisms

Using Safe Libraries (not error-prone)

▪ Not all libraries are created equal

▪ Some libraries have strict class validation during deserialization

▪ Refer to paper: Friday the 13th JSON attacks (BH2017)

Using Safe(r) Libraries

▪ Some libraries are less error-prone

▪ Deserialization with user-input
should at least have graph
inspection

Taken from Friday the 13th JSON attacks paper
https://www.blackhat.com/docs/us-17/thursday/us-17-
Munoz-Friday-The-13th-JSON-Attacks-wp.pdf

https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf

Use Blacklist or Whitelist Mechanisms

▪ Libraries may contains configurable whitelist and blacklist
▪ Xstream (Java): allowTypeHierarchy, allowTypesByRegExp, …

▪ JSON.net (C#): ContractResolver

▪ 3rd party libraries could be use to accommodate
▪ NotSoSerial, contrast-rO0, commons-io (class ValidatingObjectInputStream)

Some vendors – namely Weblogic – have

chosen to use blacklist[1]

[1] https://www.blackhat.com/docs/us-
16/materials/us-16-Kaiser-Pwning-Your-Java-
Messaging-With-Deserialization-Vulnerabilities-wp.pdf

https://www.blackhat.com/docs/us-16/materials/us-16-Kaiser-Pwning-Your-Java-Messaging-With-Deserialization-Vulnerabilities-wp.pdf

Takeaways

Takeaways

▪ Attack tools only get better

▪ Frameworks and libraries also do get better

▪ Prefer libraries with built-in class validation

▪ Deserialization is a complex attack vector
▪ Gadgets can take quite some time to be discovered

▪ Once discover the exploitation becomes trivial

Questions?

Contact
parteau@gosecure.ca
https://gosecure.net/
@h3xStream @GoSecure_Inc

References

Java References

▪ What Do WebLogic, WebSphere, JBoss, Jenkins, OpenNMS, and Your
Application Have in Common? by Stephen Breen

▪ AppSecCali 2015 - Marshalling Pickles by Christopher Frohoff and
Gabriel Lawrence

▪ Exploiting Deserialization Vulnerabilities in Java by Matthias Kaiser

▪ Java Serialization Cheat-Sheet

▪ YSoSerial tool maintained by Christopher Frohoff

▪ Look-ahead Java deserialization by Pierre Ernst

▪ NotSoSerial java-agent for mitigation

http://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability/
http://frohoff.github.io/appseccali-marshalling-pickles/
https://www.youtube.com/watch?v=VviY3O-euVQ
https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet
https://github.com/frohoff/ysoserial
http://www.ibm.com/developerworks/library/se-lookahead/
https://github.com/kantega/notsoserial

PHP References

▪ hack.lu CTF challenge 21 writeup : Simple example with PHP
unserialize

▪ PHP magic methods

▪ PHP GGC

https://websec.wordpress.com/2010/10/30/hack-lu-ctf-challenge-21-writeup-pigs/
http://php.net/manual/en/language.oop5.magic.php
https://github.com/ambionics/phpggc

Ruby References

▪ First Ruby gadget http://phrack.org/issues/69/12.html

▪ Universal Ruby Gadget https://www.elttam.com.au/blog/ruby-
deserialization/

http://phrack.org/issues/69/12.html
https://www.elttam.com.au/blog/ruby-deserialization/

.NET References

▪ Ysoserial.net : Payload generator

https://github.com/pwntester/ysoserial.net

▪ Friday The 13th JSON Attack - White Paper

https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-
The-13th-JSON-Attacks-wp.pdf

▪ New attack vector in .NET
https://illuminopi.com/assets/files/BSidesIowa_RCEvil.net_20190420
.pdf

https://github.com/pwntester/ysoserial.net
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://illuminopi.com/assets/files/BSidesIowa_RCEvil.net_20190420.pdf

