Kill All Humans... Bugs!

) Machine Learning to the rescue of code review

Presented by Philippe Arteau

L4TON

Lonpon,

= Philippe Arteau
= Security Researcher at GoSecure Countertack

= Open-source developer
* Find Security Bugs (SpotBugs - Static Analysis for Java)
= Security Code Scan (Roslyn — Static Analysis for .NET)
= Burp and ZAP Plugins (Retire.js, CSP Auditor, Reissue Request Scripter, ..)

" Machine Learning Enthusiast .. not a professsional

GCOSECURE

1. Static-analysis concepts 2. Applying Machine Learning
= Symbolic execution = |dentifying attributes
= False positives = Graph creation
" Inter-procedural data-flow = Overview of the Machine Learning
= Obstacles algoritms
= Results

3. Demonstrations
4. Lessons learned (Conclusion)

GCOSECURE

Static-analysis

GOSECURE

Symbolic execution

Simulating the code execution

. . a = <inputl>
using expression rather than ;
concrete data b= <input2>
c=b*2
!
It can be use: True[LT 071>2) | |False
= To resolve conditions a += “def" a +x"222"

* To evaluate the states of variable P
. . . a+=
as it evolves during execution

(input2 *2)-1>2

Reference : Symbolic Execution for Software Testing: Three Decades Later

GCOSECURE

https://people.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

Symbolic execution (in action)

a = <inputl>

v

b = <input2>

v

c=b*2

!

True

if(b-1>2)

False

a=a*8

a+=44

a+=1

inputl
inputl input2
inputl input2 input2*2

(b-1>2)==true

input1*8 input2 input2*2

inputl*8+1 input2 input2*2

(b-1>2)=="false

inputl+44 input2 input2*2
input1+45 input2 input2*2

GCOSECURE

Symbolic execution

= Symbolic execution mainly focuses on resolving input values to reach
a specific path

= Many vulnerabilities analyzers need to monitor validation state of
variables.

/ | v
/7 / 1
7. / / \.\
. 1 \ :

GCOSECURE

IEN I EIVSE

Safe

Unsafe
a="userld=" a="userld="
b = Config. ADMIN_USER_ID b = getHttpParameter("uid")
c=a+b c=a+b
User.applyFilter(c) User.applyFilter(c)
v

GCOSECURE

Taint analysis (in action)

Taint analysis as implemented in Find Security Bugs

a="userld="
¥ CONSTANT + TAINTED

b = getParameter(" uid ") =
v TAINTED
c=a+b

v

User.applyFilter(c)

CONSTANT
CONSTANT TAINTED
CONSTANT TAINTED TAINTED

GCOSECURE

Demonstration

(3K} Find Security Bugs

DEMO

)

GCOSECURE

Obstacles

GOSECURE

Obstacles

Obstacles that static analyzers must consider:

%4 Reflection

5 Dependency injection

&4 Second order vulnerability

%5 Encapsulation

%9 Custom framework and utility

GCOSECURE

Two blind spots from FSB

1. Implements Inter-procedural data flow
But..

= |nter-procedural data flow can missed some cases
= See : Reflection, Incomplete code, DI, Second Order, etc.

= |nter-procedural data flow can identify exploitable path from source to sink

2. Proprietary framework and utility functions are not
taken into account by Find Security Bugs

GCOSECURE

Objective :
Prioritize new vulnerabilities based
on previously classified bug patterns

GCOSECURE

Applying Machine Learning

}
|
|

What is Machine Learning?

“Machine learning is a field of computer science that uses statistical
techniques to give computer systems the ability to "learn™ with data,
without being explicitly programmed.”

GCOSECURE

https://en.wikipedia.org/wiki/Machine_learning

Supervised vs Unsupervised

s iq

Supervised Unsupervised

GCOSECURE

Supervised classification vs regression

Supervised classification

Attempt to predict the right
answer from a discrete number of
possibilities

Prediction Features ->

= Recommend or not to user
(binary)

= Type of species (finite list)

Supervised regression

Attempt to predict a continuous
value

Prediction Features ->

" House pricing (10k to 10M)
= Time of recovery from incident

GCOSECURE

Algorithm?

.
rear built

l"””l.l.l .
price per sqft

|LA||1||III|I..|..... .

“Illll .
price per sqft

“III
squars faet

Generated can take many forms:
= Graph (Naive Bayes)

L | = Series of condition (tree)

L‘l;';;; " Neural network

L

. . The algorithm are not explicitly
‘4 programmed.

] o}
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
% /
Y GOSECURE

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

ldentifying Attributes

"= Visualization of the data is crucial
= Some bug types do not have false positive (on the Juliet Test Suite)

XPATH_INJECTION - m
WEAK_MESSAGE_DIGEST_SHAIL - 8 @ © @QQ (@]
WEAK_MESSAGE_DIGEST_MDS |- w W ®0® o0

UNVALIDATED_REDIRECT |-

eicrnes so0e | CORPIORRINIPIRD

UNENCRYPTED_SERVER_SOCKET |
sacvt O @ @ @8 m
s swecron oo - CRCRRIRETD
PT_RELATIVE_PATH_TRAVERSAL [m 6) OO(Q @o
PT_ABSOLUTE_PATH_TRAVERSAL D @ 60 o® (@]

PREDICTABLE_RANDOM |- m OO@@ m

BugType

INFORMATION_EXPOSURE_THROUGH_AN_ERROR_MESSAGE - o
HTTP_RESPONSE_SPLITTING [- “
Haro_cooe passworo - ORRE0R TRRRD oG
warocorexerF 0O O o S OB
ecemoe @B OF % @ @»
DMI_CONSTANT_DB_PASSWORD [Q@D a@ o o M
oes_usace - @PO @ &@)c@ (2]
COMMAND_INJECTION “

1
BAD GOOD

L

Status

GCOSECURE

ldentifying Attributes

= Visualization of the data is crucial
= Some bug types do not have false positive (on the Juliet Test Suite)

XPATH_INJECTION - m
WEAK_MESSAGE_DIGEST_SHAIL - 8 @ © @QQ (@]
WEAK_MESSAGE_DIGEST_MDS |- w W ®0® o0

UNVALIDATED_REDIRECT |-

UNENCRYPTED_SOCKET [~

UNENCRYPTED_SERVER_SOCKET [w
oO® © ©e&®

STATIC_IV [

SQL_INJECTION_JDEC |

PT_RELATIVE_PATH_TRAVERSAL - @IPO®O & OO(Q @0
PrassolTEPATHTRAVERSALE @ D 60 o@® ©

I

BugType

PREDICTAELE_RANDOM -

| LDAP_INJECTION [~

INFORMATION_EXPOSURE_THROUGH_AN_ERROR_MESSAGE -

—

| HTTP_RESPONSE_SPLITTING -

HARD_CODE_PASSWORD -

)
. J

HARD_CODE_KEY [

Ry BOEHRL

| ECB_MODE |-

DMI_CONSTANT_DB_PASSWORD -

DES_USAGE -

| COMMAND_INJECTION

T
BAD GOOD

Status

f

GCOSECURE

l[dentifying attributes

= Quality attributes are key

= Qur attribute are based on contextual information that a human
would use

WebGoat-Lessons blind-string-sqgl-injection

=t statement = connection. Blind5tringSgllnjection.java

\ject

BesultSet results = Statement.

=
o
—

1l Copy erid = " + accountNumber;
if ((results != null) && (results. Lx Copy as Plain Text
Copy Reference

T Paste

=] 7: Structure

Paste from History...
Paste Simple

Column Selection Mode

Find Usages
Refactor ow to e query
ResultSet results = statement.executeQuery(query);

Folding
String query = "SELECT * FROM user_data WHERE userid = * + accountNumber;

Analyze

GOSECURE

New attributes created (part 1)

= Extracting the signature of the source
" ProprietaryEncoder.encodeHTML(String)
= RequestWrapper.getParameter(String)
= Configuration.getParameter(String)

= Extracting the signature of the sink

= Statement.executeUpdate(String)
" File(String)

GCOSECURE

New attributes created (part 2)

Source

= Extracting the state of sources
" Does the injectable parameter is

affected by one safe source Source
. . (Safe)
[...] by one tainted source Source
= [...] by one unknown source (Unknown)

= Additional localization attributes
= Filename
= Module name

1
\‘*‘J\\/\// < ;_f.. \
B - .

GCOSECURE

Modelizing inter-procedural dataflow
String input] {

public void loadUser(SessionFactory sessionFactory,

Session session = sessionFactory.openSession();

//HQL injection

Node2
"select t from UserEntity t where id = " + input

Node3
(String query) {

session.createQuery|

[...]

public Query createQuer

[..]

GCOSECURE

Graph representation

% MATCH (source:Variable)-[t:TRANSFER%@..8]->(n:Variable{name:"javax/servlet/http/HttpServletResponse. adddeader(Ljava/lang/string;Ljava/lang/5t..

In order to do taint analysis accross the entire web application, a graph
was built

GCOSECURE

Cypher query

MATCH (source:Variable)-[r1:TRANSFER*0..8]
(node:Variable)-[r:TRANSFER]->(sink:Variable)
WHERE
source.state IN ["UNKNOWN", "SAFE", "TAINTED"] AND
sink.name = _sink_** AND

node.source = source **
RETURN source,sink,r1,node,r;

** Full method signature (including parameter index)

GCOSECURE

Demonstration

(X%} Find Security Bugs

sonarqube

Vulnerabilities prioritization

DEMO

)

GCOSECURE

Results (Juliet Dataset

%55 _SERVLET
XPATH_INJECTION
WEAK_MESSAGE_DIGEST_SHAL
WEAK_MESSAGE_DIGEST_MDS
UNYALIDATED_REDIRECT
UNENCRYPTED_SOCKET
UNENCRYPTED_SERVER _SOCKET
STATIC_I¥
SQL_INJECTION_IDBC
PT_RELATIVE_PATH_TRAVERSAL

PT_ABSOLUTE_PATH_TRAVERSAL

BugType

PREDICTABLE_RANDOM

LDAP_INJECTION
INFORMATION_EXPOSURE_THROUGH_AN_ERROR_MESSAGE
HTTP_RESPONSE_SPLITTING

HARD_CODE_PASSWORD

HARD_CODE_KEY

ECBE_MODE

DMI_CONSTANT_DB_PASSWORD

DES_USAGE

COMMAND_IMNIECTION

GOSECURE

Results (Spring Framework)

Naive Bayes 0.761 1.00 0.614 72.7 %
K-NN (k=2) 0.973 0.966 0.970 94.2 %
C4.5 1.00 0.955 0.977 95.5 %
Random Forest 1.00 0.964 0.982 96.4 %
SVM 1.00 0.955 0.977 95.5 %

TP + TN

TP+TN+FP+FN

GCOSECURE

GOSECURE

Important of attributes

= Quality attributes are more important than the choice of ML
algorithms

" Training set need to be close to the test set
" Method signature attributes don’t work well when comparing two differents
librairies
* Machine Learning benefits mainly large codebase (1000+
vulnerabilities)
= Analysis of most web application, frameworks or libraries can be done in few
hours

" Aggregating datasets from various librairies did not work well

GCOSECURE

Future for FindSecBugs and ML..

= At the moment, still consider experimental

" Improving FSB from the statistical analysis
= Detect bug type that have a very high false positive rate

= Detect source method that have a very high false positive rate
= Suggest addition of encoding method

= Detect sink method that have a very high false positive rate
= |mprove the heuristic of the detector

GCOSECURE

Introduction to ML with Orange

= Hand-on introduction

= Step-by-step exercises

= Supervised learning using
= Titanic Dataset

= Static-Analysis Dataset (taken from
the project presented today)

= When: September 13th
(Tomorrow)
b & z
.
A) = () () () ‘?mi e ()R
: GOSECURE

Questions 2

“ " Contact
\ 1 parteau@gosecure.ca
& gosecure.net/blog/

/” YW @h3xStream @GoSecure_Inc

= —— — g

TR Y,
\ N \ / . _/’k
\ . <

\ //j/\ &

References

GOSECURE

References (Online course)

Machine Learning Coursera
= https://www.coursera.org/learn/machine-learning

Introduction to Machine Learning

= https://developers.google.com/machine-learning/crash-course/mil-
intro

GCOSECURE

https://www.coursera.org/learn/machine-learning
https://developers.google.com/machine-learning/crash-course/ml-intro

References Code Graph and Symbolic Execution

= Symbolic Execution for Software Testing: Three Decades Later by
Cristian Cadar and Koushik Sen:
https://courses.cs.washington.edu/courses/cse484/14au/reading/sy
mbolic-execution-testing.pdf

= Mining for Bugs with Graph Database Queries by Fabian Yamaguchi:
https://hacktivity.com/en/downloads/archives/405

= Modeling and Discovering Vulnerabilities with Code Property Graphs :
http://ieeexplore.ieee.org/ielx7/6954656/6956545/06956589.pdf

GCOSECURE

https://courses.cs.washington.edu/courses/cse484/14au/reading/symbolic-execution-testing.pdf
https://hacktivity.com/en/downloads/archives/405
http://ieeexplore.ieee.org/ielx7/6954656/6956545/06956589.pdf

