
Pascal Fortin, MBA, CISA, CRISC, CRMA

CEO

4/7/2015

Kill All Humans... Bugs!
Machine Learning to the rescue of code review

Presented by Philippe Arteau

Who am I ?

▪ Philippe Arteau

▪ Security Researcher at GoSecure Countertack

▪ Open-source developer
▪ Find Security Bugs (SpotBugs - Static Analysis for Java)

▪ Security Code Scan (Roslyn – Static Analysis for .NET)

▪ Burp and ZAP Plugins (Retire.js, CSP Auditor, Reissue Request Scripter, ..)

▪ Machine Learning Enthusiast .. not a professsional

Agenda

1. Static-analysis concepts
▪ Symbolic execution

▪ False positives

▪ Inter-procedural data-flow

▪ Obstacles

2. Applying Machine Learning
▪ Identifying attributes

▪ Graph creation

▪ Overview of the Machine Learning
algoritms

▪ Results

3. Demonstrations

4. Lessons learned (Conclusion)

Static-analysis

Symbolic execution

Simulating the code execution
using expression rather than
concrete data

It can be use :

▪ To resolve conditions

▪ To evaluate the states of variable
as it evolves during execution

a = <input1>

b = <input2>

if (b - 1 > 2)

c = b * 2

a += “def" a += "zzz"

a += "0123"

FalseTrue

(input2 * 2) - 1 > 2

Reference : Symbolic Execution for Software Testing: Three Decades Later

https://people.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

Symbolic execution (in action)

a b c

input1+44 input2 input2*2

a b c

input1+44 input2 input2*2

input1+45 input2 input2*2

a b c

input1
a = <input1>

b = <input2>

if (b - 1 > 2)

c = b * 2

a = a * 8 a += 44

a += 1

FalseTrue

a b c

input1

input1 input2

a b c

input1

input1 input2

input1 input2 input2*2

a b c

input1*8 input2 input2*2

a b c

input1*8 input2 input2*2

input1*8+1 input2 input2*2

(b - 1 > 2) == true

(b - 1 > 2) == false

Symbolic execution

▪ Symbolic execution mainly focuses on resolving input values to reach
a specific path

▪ Many vulnerabilities analyzers need to monitor validation state of
variables.

Taint analysis

a = "userId = "

b = Config.ADMIN_USER_ID

c = a + b

User.applyFilter(c)

a = "userId = "

b = getHttpParameter("uid")

c = a + b

User.applyFilter(c)

Safe Unsafe

Taint analysis (in action)

CONSTANT + TAINTED
=

TAINTED

a = "userId = "

b = getParameter(" uid ")

c = a+b

User.applyFilter(c)

a b c

CONSTANT

a b c

CONSTANT

CONSTANT TAINTED

a b c

CONSTANT

CONSTANT TAINTED

CONSTANT TAINTED TAINTED

Taint analysis as implemented in Find Security Bugs

Demonstration

DEMO

Obstacles

Obstacles

Reflection

Dependency injection

Second order vulnerability

Encapsulation

Obstacles that static analyzers must consider:

Custom framework and utility

Two blind spots from FSB

1. Implements Inter-procedural data flow
But..

▪ Inter-procedural data flow can missed some cases

▪ See : Reflection, Incomplete code, DI, Second Order, etc.

▪ Inter-procedural data flow can identify exploitable path from source to sink

2. Proprietary framework and utility functions are not
taken into account by Find Security Bugs

Objective :

Prioritize new vulnerabilities based

on previously classified bug patterns

Applying Machine Learning

What is Machine Learning?

“Machine learning is a field of computer science that uses statistical
techniques to give computer systems the ability to "learn" with data,
without being explicitly programmed.”

▪ https://en.wikipedia.org/wiki/Machine_learning

https://en.wikipedia.org/wiki/Machine_learning

Supervised vs Unsupervised

Supervised Unsupervised

Supervised classification vs regression

Supervised classification

Attempt to predict the right
answer from a discrete number of
possibilities

Prediction Features ->

▪ Recommend or not to user
(binary)

▪ Type of species (finite list)

Supervised regression

Attempt to predict a continuous
value

Prediction Features ->

▪ House pricing (10k to 10M)

▪ Time of recovery from incident

Algorithm?

Generated can take many forms:

▪ Graph (Naive Bayes)

▪ Series of condition (tree)

▪ Neural network

The algorithm are not explicitly
programmed.

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Identifying Attributes

▪ Visualization of the data is crucial
▪ Some bug types do not have false positive (on the Juliet Test Suite)

Identifying Attributes

▪ Visualization of the data is crucial
▪ Some bug types do not have false positive (on the Juliet Test Suite)

Identifying attributes

▪ Quality attributes are key

▪ Our attribute are based on contextual information that a human
would use

New attributes created (part 1)

▪ Extracting the signature of the source
▪ ProprietaryEncoder.encodeHTML(String)

▪ RequestWrapper.getParameter(String)

▪ Configuration.getParameter(String)

▪ Extracting the signature of the sink
▪ Statement.executeUpdate(String)

▪ File(String)

Source

Sink

New attributes created (part 2)

▪ Extracting the state of sources
▪ Does the injectable parameter is

affected by one safe source

▪ […] by one tainted source

▪ […] by one unknown source

▪ Additional localization attributes
▪ Filename

▪ Module name

Source
(Safe)

Sink

Source
(Tainted)

Source
(Unknown)

Modelizing inter-procedural dataflow

public void loadUser(SessionFactory sessionFactory, String input) {

Session session = sessionFactory.openSession();

//HQL injection

session.createQuery("select t from UserEntity t where id = " + input);

[…]

public Query createQuery(String query) {
[…]

Node1

Node2

Node3

Graph representation

In order to do taint analysis accross the entire web application, a graph
was built

Cypher query

MATCH (source:Variable)-[r1:TRANSFER*0..8]->

(node:Variable)-[r:TRANSFER]->(sink:Variable)

WHERE

source.state IN ["UNKNOWN", "SAFE", "TAINTED"] AND

sink.name = _sink_** AND

node.source = _source_**

RETURN source,sink,r1,node,r;

** Full method signature (including parameter index)

Demonstration

Vulnerabilities prioritization
DEMO

Results (Juliet Dataset)

Results (Spring Framework)

Recall Precision F-Measure Accuracy

Naïve Bayes 0.761 1.00 0.614 72.7 %

K-NN (k=2) 0.973 0.966 0.970 94.2 %

C4.5 1.00 0.955 0.977 95.5 %

Random Forest 1.00 0.964 0.982 96.4 %

SVM 1.00 0.955 0.977 95.5 %

TP + TN

TP+TN+FP+FN

Lessons learned

Important of attributes

▪ Quality attributes are more important than the choice of ML
algorithms

▪ Training set need to be close to the test set
▪ Method signature attributes don’t work well when comparing two differents

librairies

▪ Machine Learning benefits mainly large codebase (1000+
vulnerabilities)
▪ Analysis of most web application, frameworks or libraries can be done in few

hours

▪ Aggregating datasets from various librairies did not work well

Future for FindSecBugs and ML..

▪ At the moment, still consider experimental

▪ Improving FSB from the statistical analysis
▪ Detect bug type that have a very high false positive rate

▪ Detect source method that have a very high false positive rate
▪ Suggest addition of encoding method

▪ Detect sink method that have a very high false positive rate
▪ Improve the heuristic of the detector

Introduction to ML with Orange

▪ Hand-on introduction

▪ Step-by-step exercises

▪ Supervised learning using
▪ Titanic Dataset

▪ Static-Analysis Dataset (taken from
the project presented today)

▪ When: September 13th
(Tomorrow)

Questions ?

Contact
parteau@gosecure.ca
gosecure.net/blog/
@h3xStream @GoSecure_Inc

References

References (Online course)

Machine Learning Coursera

▪ https://www.coursera.org/learn/machine-learning

Introduction to Machine Learning

▪ https://developers.google.com/machine-learning/crash-course/ml-
intro

https://www.coursera.org/learn/machine-learning
https://developers.google.com/machine-learning/crash-course/ml-intro

References Code Graph and Symbolic Execution

▪ Symbolic Execution for Software Testing: Three Decades Later by
Cristian Cadar and Koushik Sen:
https://courses.cs.washington.edu/courses/cse484/14au/reading/sy
mbolic-execution-testing.pdf

▪ Mining for Bugs with Graph Database Queries by Fabian Yamaguchi:
https://hacktivity.com/en/downloads/archives/405

▪ Modeling and Discovering Vulnerabilities with Code Property Graphs :
http://ieeexplore.ieee.org/ielx7/6954656/6956545/06956589.pdf

https://courses.cs.washington.edu/courses/cse484/14au/reading/symbolic-execution-testing.pdf
https://hacktivity.com/en/downloads/archives/405
http://ieeexplore.ieee.org/ielx7/6954656/6956545/06956589.pdf

