Save some time by downloading these files
Download Orange <u>https://orange.biolab.si/</u>
Download Datasets http://bit.ly/44con-ml

Orange is the new Hack

AN INTRODUCTION TO MACHINE LEARNING WITH ORANGE

Prezented by Philippe Arteau

Who am I?

- Philippe Arteau
- Security Researcher at CounterTack GoSecure
- Open-source developer
 - Find Security Bugs (SpotBugs Static Analysis for Java)
 - Security Code Scan (Roslyn Static Analysis for .NET)
 - Burp and ZAP Plugins (Retire.js, CSP Auditor)
- Machine Learning Enthousiast

Agenda

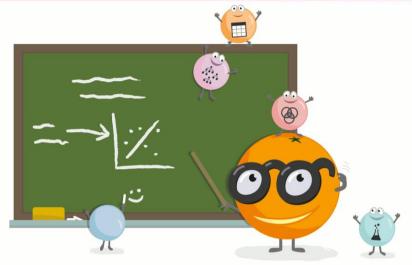
Machine Learning introduction

- Definition
- Supervised vs Unsupervised
- ••••
- Hands on exercises
 - Data visualization exercises
 - Classification exercises
 - Using/Building custom plugin
- Conclusion

This workshop is for you

Knowledge requirement

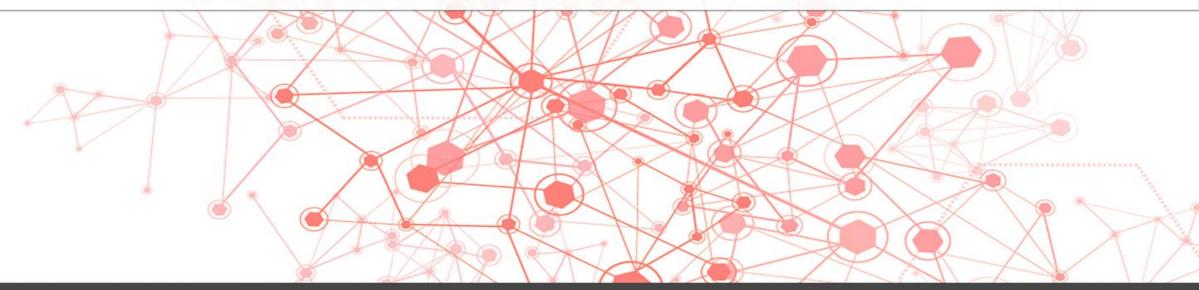
- You don't need prior knowledge of Machine Learning
 - I have no statistics or machine learning specialization myself !
- Machine Learning is a technique that can be applied to many fields
- Aside from learning the basic principles, the workshop might give you some ideas for future applications



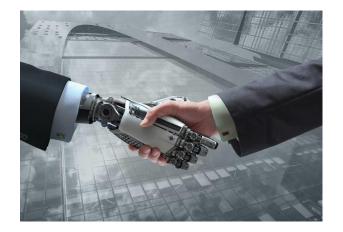
Orange

Tool used in this workshop

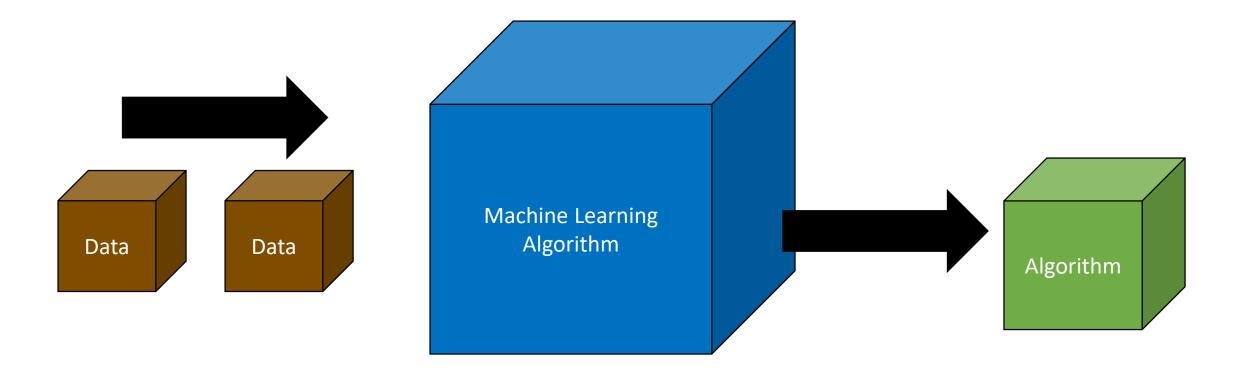
- Orange is a python Machine Learning library
- Orange has a powerful UI
 - No programming knowledge required



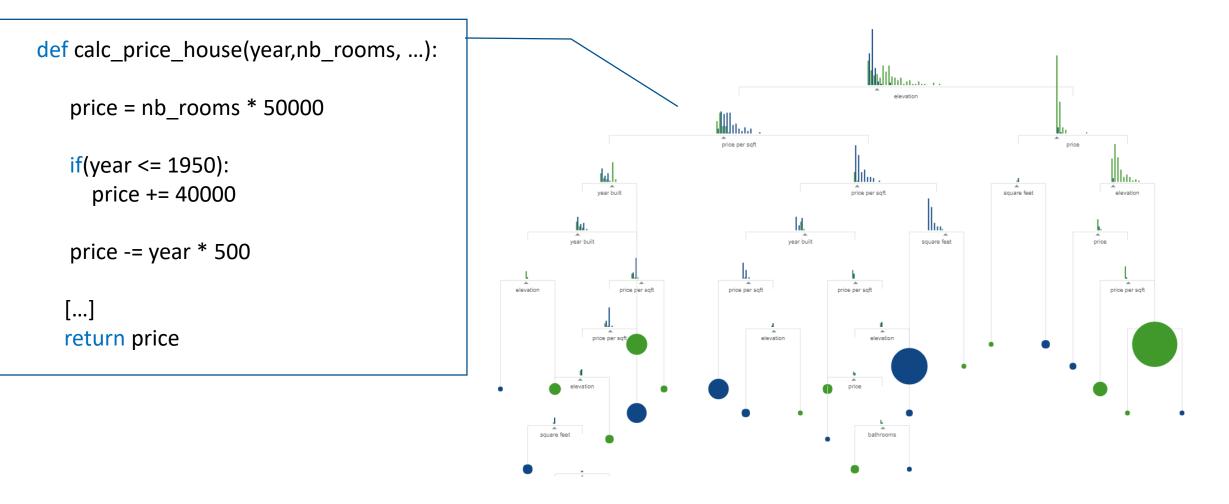
- Many framework can be used to reproduce the exercise
 - I highly encourage you to try other tools in your projects
- I find Orange extremely useful for prototyping, visualization and training
- It may not scale for datasets that can't fit in RAM



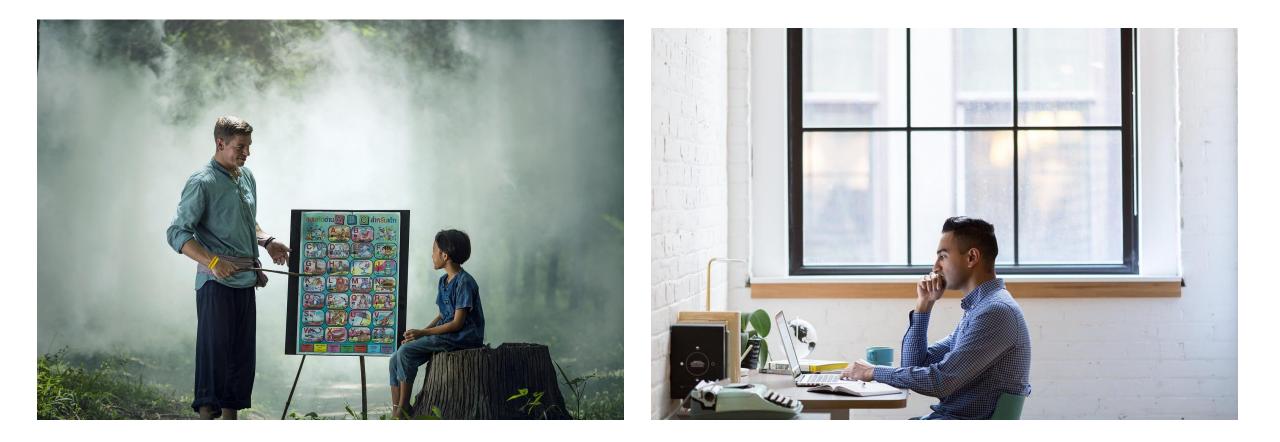
Machine Learning?


"Machine learning is a field of computer science that uses **statistical techniques** to give computer systems the ability to "learn" with data, without being **explicitly programmed**."

<u>https://en.wikipedia.org/wiki/Machine_learning</u>



"without being explicitly programmed"


Data-driven algorithm

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Supervised vs Unsupervised

Supervised Classification vs Regression

Supervised learning has two variations

Supervised classification

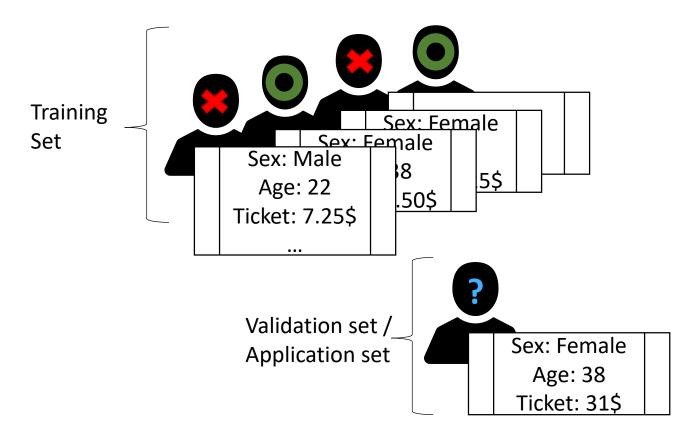
Attempts to predict the **right answer** from a discrete number of possibilities

Prediction Features ->

- Recommend or not to user
- Types of species

Supervised regression Attempts to predict a **continuous**

value

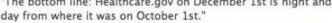

Prediction Features ->

- House pricing (10k to 10M)
- Time of recovery from an incident

Supervised Classification

Example of prediction

Info		Name	Survived	Pclass	Sex	Age	SibSp	Parch	Fare
891 instances 9 features (19,4% missing values)	1	Braund, Mr. Owen Harris	Died		male	22.00	1	0	7.25
Discrete class with 2 values (no	2	Cumings, Mrs. John Bradley (Florence Brig	Survived		female	38.00	1	0	71,283
missing values)	3	Heikkinen, Miss, Laina	Survived		6 female	26.00	0	0	7.92
3 meta attributes (0.1% missing	4	Futrelle, Mrs. Jacques Heath (Lily May Peel)	Survived		female	35.00	1	0	53,100
values)	5	Allen, Mr. William Henry	Died		male	35.00	0	0	8.050
	6	Moran, Mr. James	Died		male	?	0	0	8.45
Variables	7	McCarthy, Mr. Timothy J	Died		male	54.00	0	0	51.862
Show variable labels (if present)	8	Palsson, Master. Gosta Leonard	Died		male	2.00	3	1	21.07
Visualize numeric values	9	Johnson, Mrs. Oscar W (Elisabeth Vilhelmin	Survived		6 female	27.00	0	2	11.13
Color by instance classes	10	Nasser, Mrs. Nicholas (Adele Achem)	Survived		female	14.00	1	0	30.070
	11	Sandstrom, Miss. Marguerite Rut	Survived		6 female	4.00	1	1	16.70
Selection	12	Bonnell, Miss. Elizabeth	Survived		female	58.00	0	0	26.550
Select full rows	13	Saundercock, Mr. William Henry	Died		3 male	20.00	0	0	8.050
	14	Andersson, Mr. Anders Johan	Died		3 male	39.00	1	5	31.27
	15	Vestrom, Miss. Hulda Amanda Adolfina	Died		6 female	14.00	0	0	7.854
	16	Hewlett, Mrs. (Mary D Kingcome)	Survived		female	55.00	0	0	16.000
	17	Rice, Master. Eugene	Died		3 male	2.00	4	1	29.12
	18	Williams, Mr. Charles Eugene	Survived		2 male	?	0	0	13.000
	19	Vander Planke, Mrs. Julius (Emelia Maria Va	Died		6 female	31.00	1	0	18.000
Restore Original Order	20	Masselmani, Mrs. Fatima Survived 3 female ?	0	0	7.22				
-	21	Fynney, Mr. Joseph J	Died		2 male	35.00	0	0	26.000
Send Automatically	27 6	Poselar Mr. Laurence	Consistent		alem 1	24.00	0	0	12.00

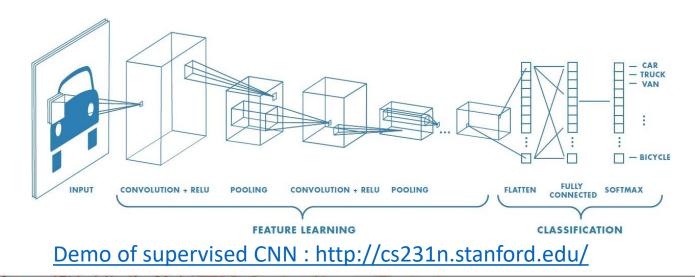

Unsupervised Classification: Text

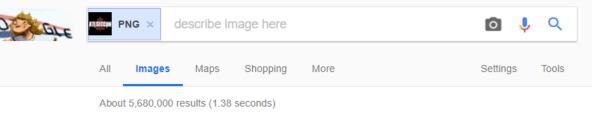

Use case : Classification of related articles

- One potential implementation would be based on the top rare keywords from the content
- Titles of article don't need to be similar

A

The Atlantic "The bottom line: Healthcare.gov on December 1st is night and





Unsupervised Classification: Images

Use case : Classification of **similar** images (mostly unlabeled)

 Convolutional neural network (CNN) could be applied

400 × 400 Find other sizes of this image: All sizes - Medium

Pages that include matching images

Image size:

Ulrike Bahr-Gedalia - President & CEO - Digital Nova Scotia | LinkedIn https://ca.linkedin.com/in/ubahrged

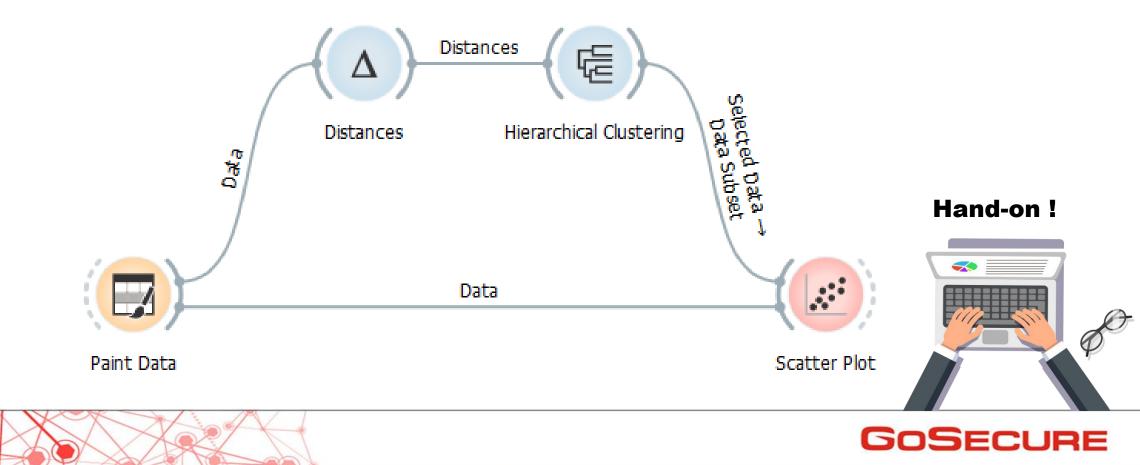
400 × 400 - View Ulrike Bahr-Gedalia's profile on LinkedIn, the world's largest professional community. Ulrike has 6 jobs jobs listed on their profile. ... make plans and discuss industry trends. Towards the end of the cycle, Mentees are encouraged to pay their experience forward, by mentoring an undergraduate student for a short period.

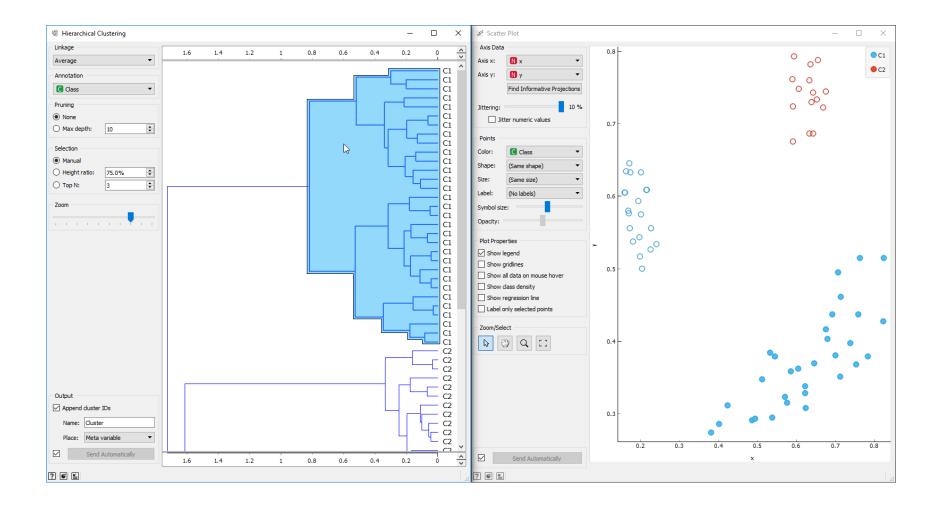
Digital Nova Scotia - AtlSecCon 2018

https://www.digitalnovascotia.com/events/atlseccon-2018/ ▼

 150×95 - Established in 2011, our goal is **to** provide quality information security education and training at an affordable cost. ... With **over** 600 flights a week, you can travel **by** air **to** Halifax **on** direct flights from most Canadian cities, along with Boston, Newark, Detroit, Bangor, and overseas via London, Frankfurt, Munich and ...

Atlantic Security Conference: Full Schedule


https://atlanticsecurityconference2018.sched.com/list/descriptions/ ▼ 2400 × 500 - Then, we are going to follow the code in the MBR and show how a simple malicious kernel code can take control of the boot process until you **pay** the ransom. I will show a demo **on** how **to** debug the MBR **to see** how the actual native code executes without any API. We are also going **to see** how we can use a combination of ...


Clustering Warm-up with Orange

In order to warmup for Orange workflow, we are going to create the following clustering classifier

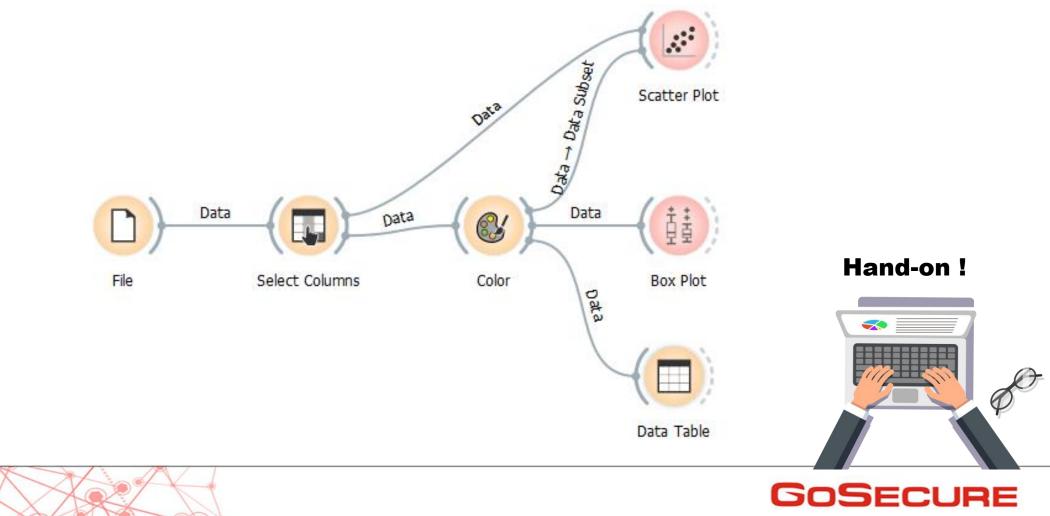
Interactive Visualization (Selection)

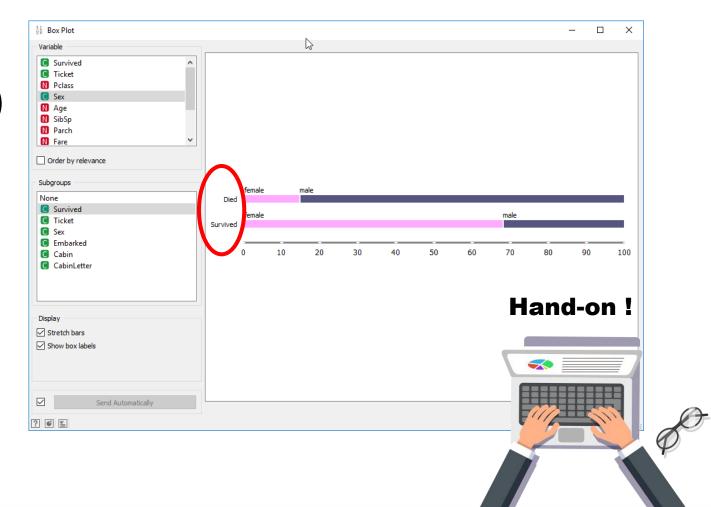
Data Visualization (Titanic Dataset)

The Titanic Dataset

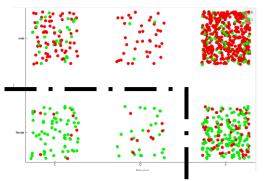
- survival: Survival (0 = No; 1 = Yes)
- pclass: Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)
- name: Name
- sex: Sex
- age: Age
- sibsp: Number of Siblings/Spouses Aboard
- parch: Number of Parents/Children Aboard
- ticket: Ticket Number
- fare: Passenger Fare
- cabin: Cabin
- embarked: Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)
- https://jasonicarter.github.io/survival-analysis-titanic-data/

Why visualization is important?

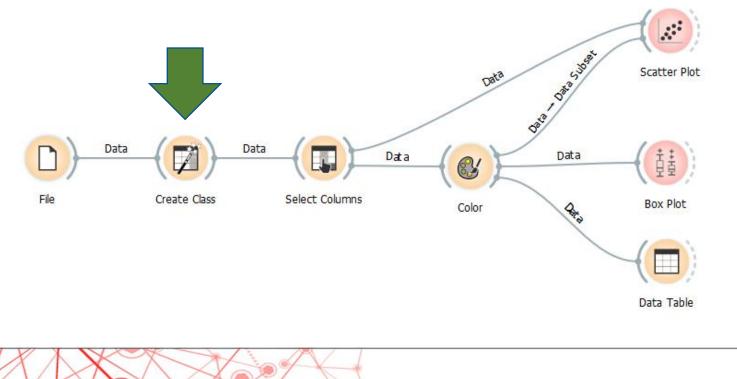

- The choice of algorithm is not always obvious
- Visualization can help greatly the debugging of ML algorithm
 - Quickly identify and review extreme value
 - Review misclassified entries
- Better understand how algorithm behave

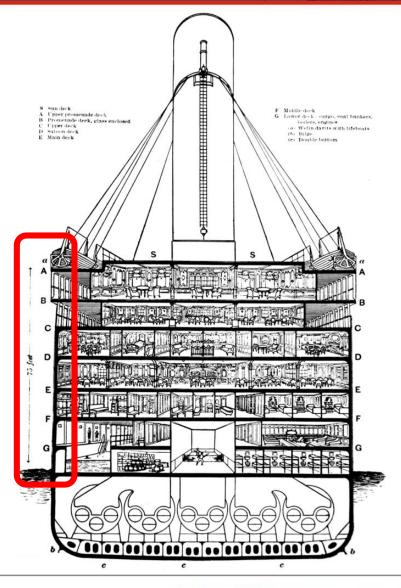

Your First Orange workflow

Before doing any classification, we are going to visualize the dataset


Color Change and Values Renamed

- The default colors might be counterintuitive (Red for Positive / Green for Negative)
- Some values can be primitive (True/False or 0/1)
- Configure the color component to generate the adjacent view


- In the Scatter Plot View, find two attributes that would allow a good projection. You should be able to see a clear separation of class (Survived or not). It doesn't need to be perfect.
- Can you identify an abnormally precise attribute ?
- Which attribute could be improved ?



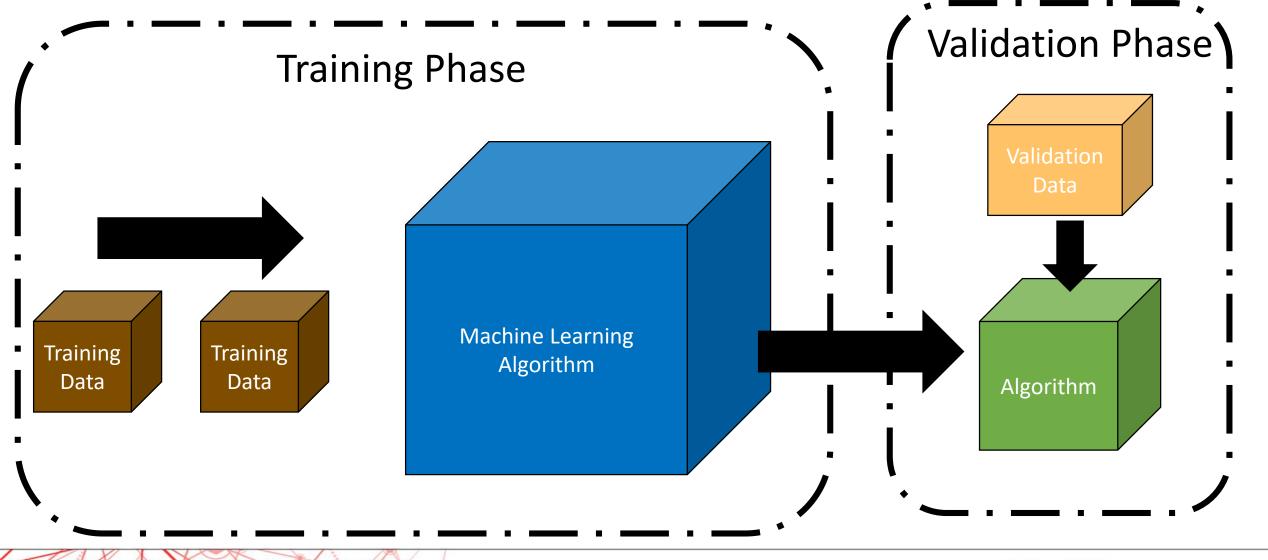
Cabin Number

- The cabin attribute contains the level (B86, C85, E46 -> B,C,E)
 - A transformation is required to allow the future classification to see this information

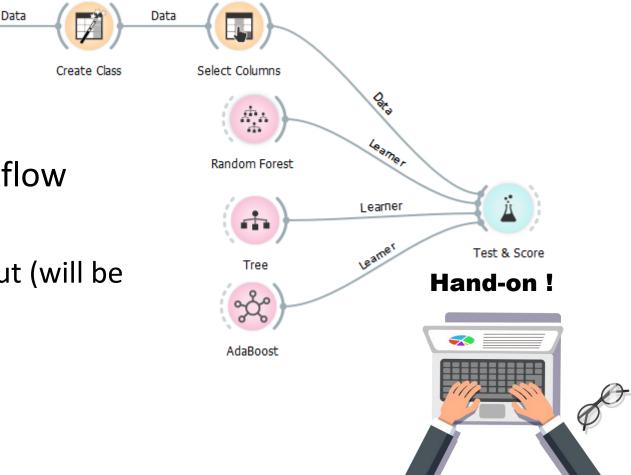
Creating the "Cabin Letter" Attribute

For simple features creation, two widgets are available

- Create class (Substring operation)
- Feature constructor (Numeric transformation)


column	C Cabin		
ame	Substring		ances
1	A	15	
	В	47	
;	с	59	
)	D	33	
	E	32	
:	F	13	
;	G	4	
1	H	0	
+ e for the n	ew class: CabinLetter	Hand-	on
latch only	at the beginning		
ase sensit			

Making Prediction (Titanic Dataset)

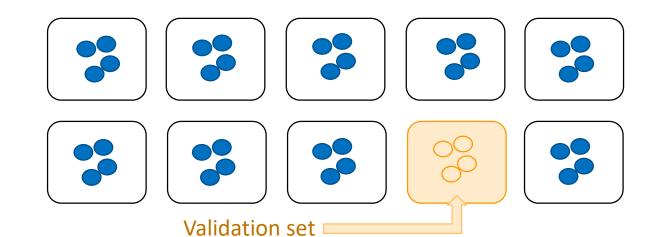


Identifying Efficient Algorithm

Testing Algorithms

GOSECURE

- Drag three algorithms to the workflow
- Use the "Test & Score" widget
 - It takes the complete dataset as input (will be used for training and validation)

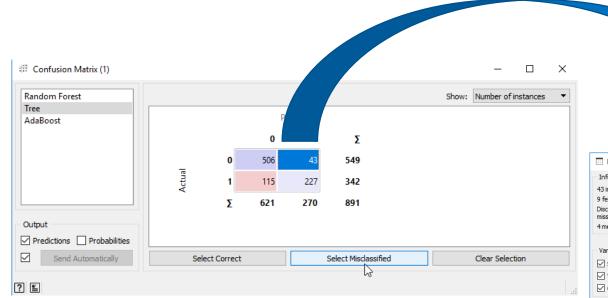

File

All algorithms link will be measured

Test & Score

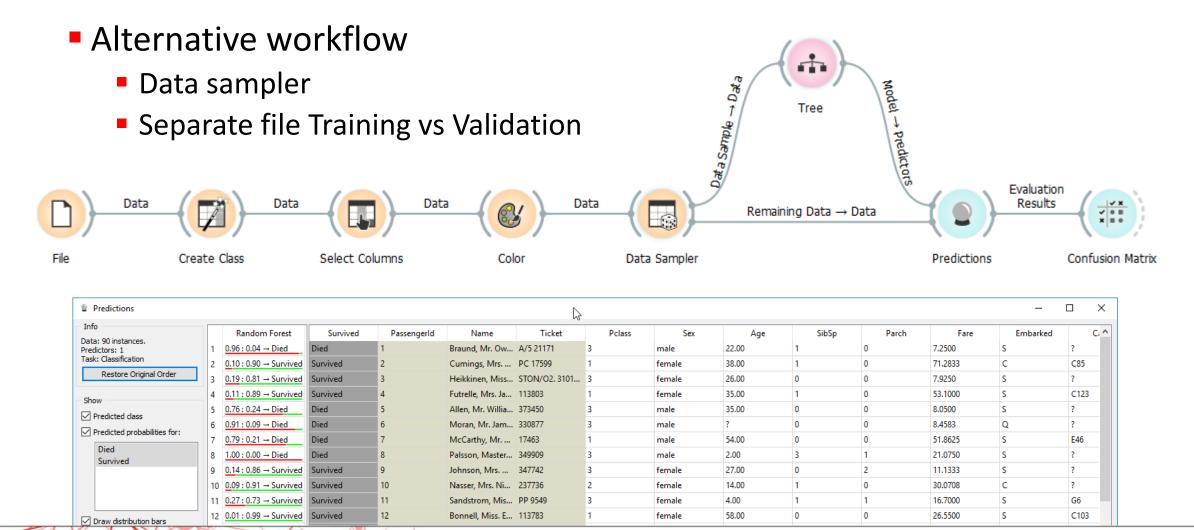
10-fold Cross validation

Technique to evaluate predictive models by partitioning the original sample into a training set to train the model, and a test set to evaluate it.

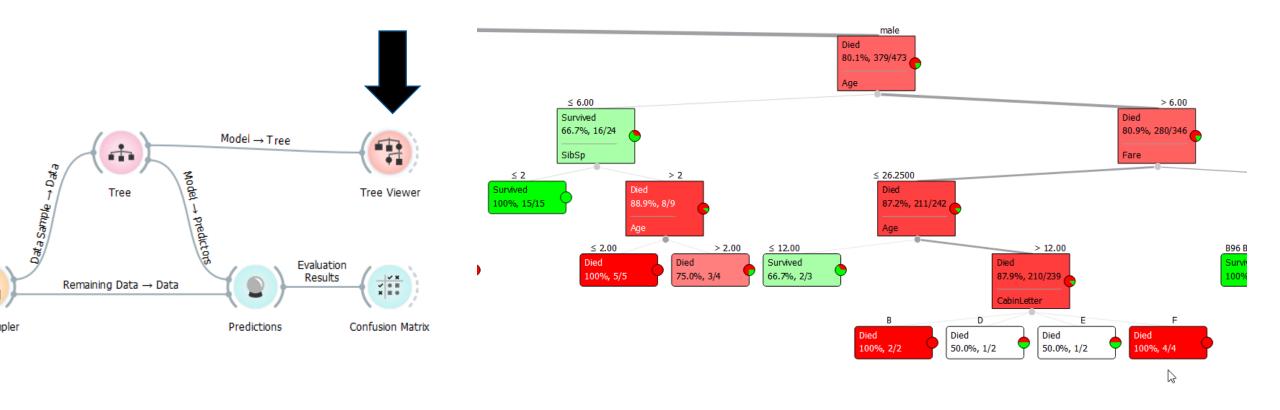


🛓 Test & Score

Sampling	Evaluation Result	s				
Cross validation	Method	AUC	CA	F1	Precision	Recall
Number of folds: 10 🔻	Tree	0.827	0.823	0.742	0.841	0.664
Stratified	Random Forest	0.865	0.816	0.743	0.801	0.693
 Cross validation by feature Cross validation by feature Ticket Random sampling Repeat train/test: 10 ▼ Training set size: 66 % ▼ Stratified Leave one out Test on train data Test on test data 	AdaBoost	0.839	0.799	0.734	0.746	0.722
Target Class						
(Average over classes)						


Analyzing Misclassified Elements

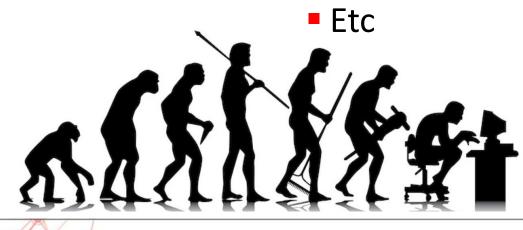
Data Table (1)						— C	- X
Info					1		_
43 instances		Survived	Passengerld	Name	Ticket	Survived(Tree)	^
9 features (21.7% missing values)	1	0	236	Harknett, Miss	W./C. 6609	1	3
Discrete class with 2 values (no	2	0	265	Henry, Miss. De	382649	1	3
missing values)	3	0	313	Lahtinen, Mrs	250651	1	2
4 meta attributes (no missing values)	4	0	356	Vanden Steen,		1	3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3
	5	0	637	Leinonen, Mr	STON/O 2. 3101	1	3
Variables	6	0	681	Peters, Miss. Ka	330935	1	3
Show variable labels (if present)	7	0	773	Mack, Mrs. (Ma	S.O./P.P. 3	1	2
Visualize numeric values	8	0	19	Vander Planke,	345763	1	3
Color by instance classes	9	0	25	Palsson, Miss. T	349909	1	3
	10	0	42	Turpin, Mrs. Wi	11668	1	2
Selection	11	0	141	Boulos, Mrs. Jo	2678	1	3
Select full rows	12	0	375	Palsson, Miss. S	349909	1	3
	13	0	883	Dahlberg, Miss	7552	1	3
	14	0	499	Allison, Mrs. H	113781	1	1
	15	0	504	Laitinen, Miss	4135	1	3
	16	0	618	Lobb, Mrs. Willi	A/5. 3336	1	3
	17	0	855	Carter, Mrs. Ern	244252	1	2
	18	0	15	Vestrom, Miss	350406	1	3
	19	0	112	Zabour, Miss. H	2665	1	3 2 3 3 1
	20	0	178	Isham, Miss. An	PC 17595	1	
	21	0	241	Zabour, Miss. T	2665	1	3 3 2 3
	22	0	655	Hegarty, Miss	365226	1	3
	23	0	853	Boulos, Miss. N	2678	1	3
	24	0	358	Funk, Miss. An	237671	1	2
	25	0	714	Larsson, Mr. Au	7545	1	3
	26	0	808	Pettersson, Mis	347087	1	3
	27	0	220	Harris, Mr. Walter	W/C 14208	1	2
	28	0	383	Tikkanen, Mr. J	STON/O 2. 3101	1	3


Data Sampler + Predictions Widget (alternative)

Visualizing the Model Produced

Select the widget Tree Viewer

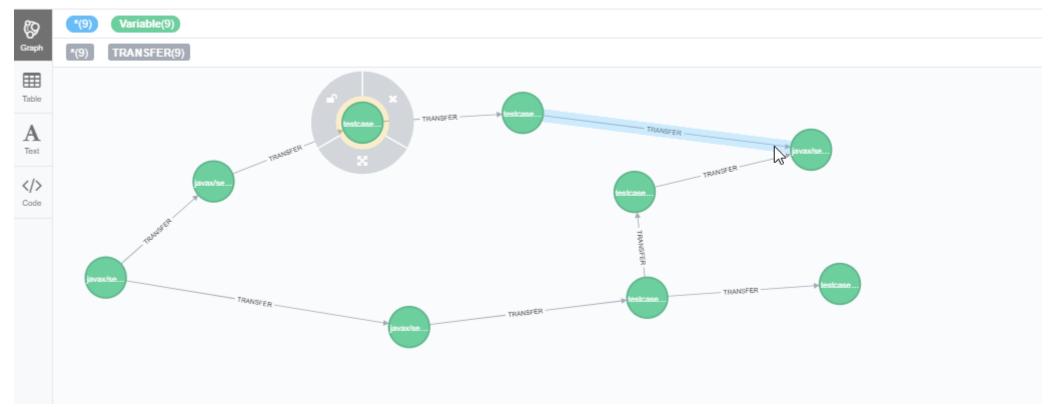
Testing Classification Algorithm (Static-Analysis Dataset)


Applying ML to Static Analysis

Typical Static Code Analysis (SCA) report includes

- Bug type
- Source file (or class name)
- Line number
- Description for remediation

"Enrich" Information added to the model


- Presence of Tainted variable
- Presence of Safe source
- Methods called
 - Sources and Sinks

Where Do Those New Attributes Comes From?

\$ MATCH (source:Variable)-[t:TRANSFER*0..8]->(n:Variable{name:"javax/servlet/http/HttpServletResponse.addHeader(Ljava/lang/String;Ljava/lang/St...

In order to do taint analysis accross the entire web application, a graph was built (The CSV is the result of this graph query on such graph).

GOSECURE

Preview with a Subset of the Data

Info							1			1				
13 instances		Key	GroupId	ArtifactId	Author	BugType	CWE	MethodSink	UnknownSource	SourceMethod	-lasTaintedSource	HasSafeSource	asUnknownSoure	Statu
12 features (26.9% missing values) No target variable. 2 meta attributes (no missing values)	1	1	gov.nist.samate	juliet-test-suite	?	SQL_INJECTIO	89	java/sql/Statem	java/lang/System.gete	testcases/CWE89_SQ	true	true	false	?
	2	1	gov.nist.samate	juliet-test-suite	?	SQL_INJECTIO	89	java/sql/Statem	?	testcases/CWE89_SQ	true	true	true	?
	3	1	gov.nist.samate	juliet-test-suite	?	LDAP_INJECTION	90	javax/naming/	javax/servlet/http/Coo	testcases/CWE90_LD	true	true	false	?
Variables Show variable labels (if present) Visualize numeric values Color by instance dasses	4		gov.nist.samate	juliet-test-suite		LDAP_INJECTION	90	javax/naming/	javax/servlet/http/Http	testcases/CWE90_LD	true	true	false	?
	5	1	gov.nist.samate	juliet-test-suite	?	XSS_SERVLET	79	java/io/PrintWr	java/lang/Throwable.g	testcasesupport/Abst	false	true	true	?
	6	1	gov.nist.samate	juliet-test-suite	?	XSS_SERVLET	79	java/io/PrintWr	java/lang/Throwable.g	testcasesupport/Abst	false	true	true	?
	7	1	? gov.nist.samate	juliet-test-suite	?	XSS_SERVLET	79	java/io/PrintWr	java/lang/Throwable.g	testcasesupport/Abst	false	true	true	?
	8	1	gov.nist.samate	juliet-test-suite	?	XSS_SERVLET	79	java/io/PrintWr	java/lang/Throwable.g	testcasesupport/Abst	false	true	true	?
	9	1	gov.nist.samate	juliet-test-suite	?	XSS_SERVLET	79	java/io/PrintWr	java/lang/Throwable.g	testcasesupport/Abst	false	true	true	?
Selection Select full rows	10	1	gov.nist.samate	juliet-test-suite	?	XSS_SERVLET	79	java/io/PrintWr	java/lang/Throwable.g	testcasesupport/Abst	false	true	true	?
	11	1	? gov.nist.samate	juliet-test-suite	?	DMI_EMPTY_D	259	?	?	testcasesupport/IO.g	?	?	?	?
	12	1	gov.nist.samate	juliet-test-suite	?	HARD_CODE_P	259	?	?	testcasesupport/IO.g	?	?	?	?
	13	1	gov.nist.samate	juliet-test-suite	?	PREDICTABLE	330	?	?	testcasesupport/IO.st	?	?	?	?

Developed by the NIST to test static code analysis tools

- 28881 individual test cases
- 118 CWE categories
- Language: Java

https://samate.nist.gov/SRD/testsuite.php

Filtering data (possibly noise)

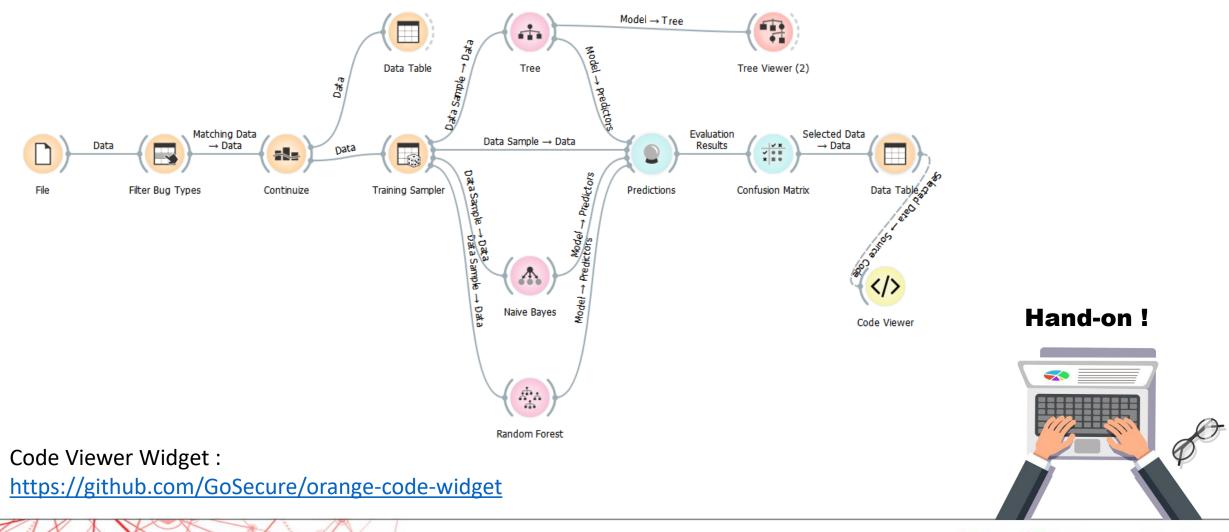
Additional filter needed "Select Rows Widget"

	🖼 Filter Bug Types – 🗆 🗙							
	Conditions							
	🖸 ВидТуре	▼ is not	-	SQL_INJECTION_JDBC	- →	×		
	🖸 ВидТуре	▼ is not	-	SQL_NONCONSTANT_STRIN	NG_PASSED_TO_EXECUT 🔻	×		
Data Match								
File Filter Bug Types								
	Add Condition Add All Variables Remove All							
	Data		Purging					
	In: ~13010 rows, 15 variables							
	Out: ~5794 rows, 15 variables		Remove unused classes					
			Send automatically		Send			
	? 5	For your information only: These categories have been removed from the dataset.						
		i nese categorie	es nave beer	h removed fr	om the data	set.		

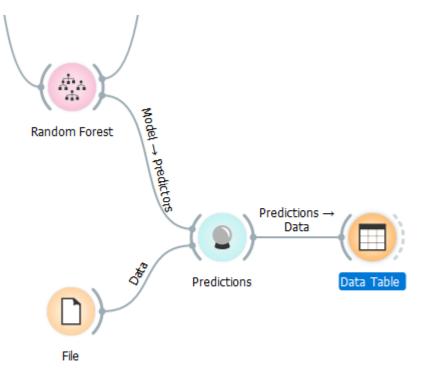
Objectives for the SCA datasets

Find the types of bugs that have low or high false positives

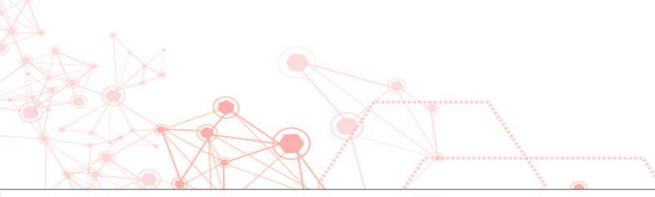
- Which attributes should be transfer to metadata?
 - Attributes that should be ignored
- Reproduce the same prediction workflow to this new dataset
- Which algorithm perform the best?



Hand-on !


Expected Orange Canvas

GOSECURE


Can you find the vulnerability?

- Apply the "Random forest" algorithm to the dataset "03_hotel-spotbugsresults.csv"
- Use the Code Widget to explore the potential vulnerability
 - <u>https://github.com/GoSecure/orange-code-widget</u>

Conclusion

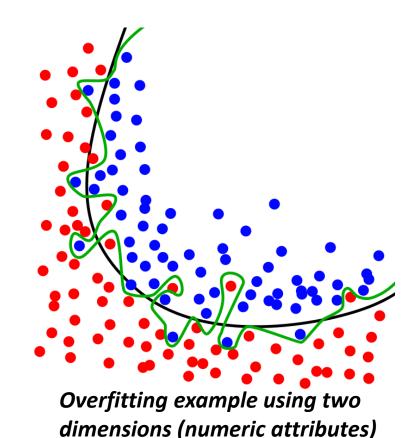
Potential Extensions to this Workshop

Repeat the exercise with the Orange API

- >>> import Orange
- >>> data = Orange.data.Table("juliet-result.csv")

- Develop custom widgets for Orange (Python based add-on)
- Start experimenting with your own dataset

Training ML algorithm


Short documentary on Machine Learning training risks

Inadequate training set (noisy, incomplete)

Overfitting

- Excellent results with training data
- ..but inaccurate with application data
- Underfitting
 - Lack of attributes
- Keep skepticism regarding the validity of your data and the performance associated to your algorithm's results

GOSECURE

- This workshop touches only a subset of Machine Learning (Supervised-learning)
- Supervised-learning requires prior classification of a subset of values
- Machine learning will not work on any data
 - The selection of attributes is crucial
- Selection of training data and validation data is very important

References

Machine Learning Coursera

https://www.coursera.org/learn/machine-learning

Introduction to Machine Learning

https://developers.google.com/machine-learning/crash-course/ml-intro

Getting Started with Orange : Tutorial Series

<u>https://www.youtube.com/watch?v=HXjnDlgGDul&list=PLmNPvQr9Tf-</u> <u>ZSDLwOzxpvY-HrE0yv-8Fy</u>

Additional Datasets

Kaggle

https://www.kaggle.com/datasets

Google BigQuery public datasets

https://bigquery.cloud.google.com/publicdatasets/

OpenML

https://www.openml.org/search?type=data

Data from your systems..

Log files (WAF, IDS), malware samples (exe, ps, apk), network capture (pcap), etc.

