
Security Boot Camp
For .NET developers

Philippe Arteau
Security Researcher for GoSecure

12/03/2018

Who am I ?

▪ Philippe Arteau

▪ Security Researcher at GoSecure

▪ Open-source developer
▪ .NET Security Guard Security Code Scan (Roslyn – Static Analysis for .NET)

▪ Find Security Bugs (SpotBugs - Static Analysis for Java)

▪ Burp and ZAP Plugins (Retire.js, CSP Auditor)

▪ Volunteer for the conference and former trainer

Agenda

▪ Introduction

▪ Vulnerabilities in .NET Context
▪ Path Traversal
▪ XSS
▪ Cryptography
▪ Hardcoded secret

▪ Automating Checks
▪ Visual Studio / MsBuild

▪ Recent Trends
▪ Deserialization
▪ Double Parsing

▪ Methodology for Code Review

▪ Conclusion

Introduction

Security Code Review

▪ Code review is the systematic examination of source code[1] with the
specific goal of findings security bugs.

▪ Security Bugs?
▪ Injections

▪ XSS

▪ Cryptographic weakness

▪ Logic flaw

▪ And many more...

[1] Wikipedia: Code review

https://en.wikipedia.org/wiki/Code_review

Why Security Code Review?

▪ Complementary to dynamic techniques (penetration testing, fuzzing,
etc.)

▪ Every technique has its advantages

▪ Code review advantages:
▪ Coverage

▪ Finding all instances of a vulnerability

▪ Accessible activity for developer

▪ Excellent for doing defense in depth

Vulnerabilities
in .NET Context

Path Traversal

▪ SQL injection are easy to manage with prepare statement

▪ Path traversal is a source of injection that is often overlooked

▪ When does it matter?
▪ File upload (writing to filesystem)

▪ Document loading (reading from filesystem)

▪ Can be applied in rare cases to URL [1]

[1] Example: https://sakurity.com/blog/2015/03/15/authy_bypass.html

DEMO

https://sakurity.com/blog/2015/03/15/authy_bypass.html

Cross-Site Scripting (XSS)

▪ Encoding with Razor template is usually secure
▪ HTML entities are escaped by default

Special cases

▪ Use of @Html.Raw()

▪ Placing values in JavaScript /!\

▪ JavaScript client-side template
DEMO

Padding Oracle and Integrity

▪ .NET Framework provided symetric encryption primitive
▪ Namespace System.Security.Cryptography

▪ Include the mode: CBC, ECB, OFB, …

▪ Does not provided integrity

DEMO

https://msdn.microsoft.com/en-us/library/system.security.cryptography.ciphermode(v=vs.110).aspx

Hardcoded Password

▪ Password

▪ Service account

▪ API keys

▪ Store value in configuration

▪ Encrypt the value

Identity Server

new Client
{

ClientId = "client",
AllowedGrantTypes = GrantTypes.ClientCredentials,
ClientSecrets =
{

new Secret("secret".Sha256())
},
AllowedScopes = { "api1" }

}

Automating Checks

Automate Code Analysis

▪Identifying bugs and vulnerabilities is nice but…

Automate Code Refactoring

▪Remediation is event better!

▪Some vulnerabilities require high-level
understanding of the application

Ctrl-dot

Security Code Scan

Demo

DEMO

Recent Trends

JSON Deserialisation

▪ History repeats itself
▪ 2016: Numerous Java application were found vulnerable to

native deserialization

▪ 2017: Researchers [1] found issues in .NET JSON serializer
▪ Some libraries have issued updates

▪ The vulnerability was called: JSON Friday 13th

▪ Two ingredients needed for a successful attack
▪ Gadgets

▪ Unsafe deserialization

[1] Alvaro Muñoz, Oleksandr Mirosh and James Forshaw

JSON Deserialization

Affected librairies

▪ FastJSON

▪ Json.NET (use of TypeNameHandling.All)

▪ FSPickler

▪ Sweet.Jayson

▪ JavascriptSerializer

▪ DataContractJsonSerializer

Ref: https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf

DEMO

https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf

Double Parsing

▪ What if the system validating and using the value was not the same

System 1
Parsing and validating

System 2
Using value

Validated value
Client

value

Client-side Server-side

Double Parsing: URLs
When parsing the following URL, what is the host?

Reference: A New Era of SSRF - Exploiting URL Parser in Trending Programming Languages!

https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf

Double Parsing: URLs

▪ Less likely to happen in .NET
▪ Small numbers of URI parser

▪ High probability when interacting in other systems

▪ DNS rebinding needed to be considered for host whitelisting

▪ Conclusion
▪ Do not trust validated input that was parsed differently

Find the Bugs

{
"username": "philippe",
"fullname": "Philippe A.",
"newPassword": “C0nf00"

}

IdentityValidator.cs

boolean IsValidRequest(json) {
var jsonReader = JsonReaderWriterFactory.CreateJsonReader(json,[…]);
var root = XElement.Load(jsonReader);

return root.XPathSelectElement("//username ").Value == HttpContext.Current.User.Identity.Name;
}

UpdateUser.cs

void ProcessUpdateUser(json) {
if(IsValidRequest(json)) {

JObject user = JObject.Parse(json);

var usersToUpdate = context.User.Where(u => u.username == user.GetValue(“username")).ToList();
usersToUpdate.ForEach(u => u.Password = user.GetValue("newPassword"));
context.SaveChanges();

}
}

*Pseudocode is highly simplified

JSON Parser in .NET

Inspired by: https://justi.cz/security/2017/11/14/couchdb-rce-npm.html

{
"username": "philippe",
"fullname": "Philippe A.",
"newPassword": “C0nf00"

}

{
"username": "philippe",
"username": "yannlarrivee",
"fullname": "hihihi",
"newPassword": “C0nf00"

}

{
"username": "philippe",
"username": "yannlarrivee",
"fullname": "hihihi",
"newPassword": “C0nf00"

}

using Newtonsoft.Json;

{
"username": "philippe",
"username": "yannlarrivee",
"fullname": "hihihi",
"newPassword": “C0nf00"

}

using System.Runtime.Serialization.Json;

https://justi.cz/security/2017/11/14/couchdb-rce-npm.html

Methodology for
Code Review

Code Review in SDLC

▪ First thing first, code review is ONE of the security activities thad need
to be integrated in the development lifecycle.

Code Review Steps

1. Threat modeling [1]

2. Analysis

3. Reporting (Document or Opening ticket) *

4. Bug fixing *

[1] OWASP Code Review Guide v2 p.32

* Not covered in this presentation

https://www.owasp.org/images/5/53/OWASP_Code_Review_Guide_v2.pdf

Threat modeling :
Decomposing the application

▪ Identify assets to protect
▪ Personal information
▪ Documents
▪ Passwords

▪ Identify entry points
▪ MVC Controller
▪ Web Services
▪ Forms

▪ Identify external dependencies

▪ Imagine possible threats (STRIDE : Spoofing, Tampering, Information
Disclosure, Denial of Service, Elevation of privilege)

Analysis

1. Tools configuration

2. Automate scan

▪ Review potential issues

3. Manual review

Static analysis tools can also be run in parallel with the manual review.

Dataflow

▪ Mapping between inputs and APIs

▪ Categories of bugs
▪ Injection

▪ Path traversal

▪ Static IV (Cryptography)

▪ Deserialization

Method

Method Method

Method

Input

Sink

Context

▪ APIs are not vulnerable by default

▪ APIs are designed to be used in a certain context

▪ Categories of bugs
▪ Random number generation

▪ Oracle Padding Attack or any other active attack

▪ Control based on Host header

▪ Insecure communication (internal communication vs network
communication)

▪ Configuration files vs Upload files

Checklist

▪ Intended for baseline verifications

▪ Guidelines

▪ Reproducibility

Listing taken from: OWASP Application Security Verification Standard Project

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project

Good Resources

Code Review Guide Verification ListDevelopment Lifecycle

https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
http://www.microsoft.com/en-us/download/details.aspx?id=12379

Conclusion

Conclusion

▪ Code review is a powerful technique to find security bugs
▪ But don’t forget to do dynamic tests as well

▪ Use tools when possible
▪ Build or extends tools when needed

▪ Recent trends affecting .NET
▪ Angular XSS (Client-side template injection)
▪ Deserialization vulnerabilities
▪ Double parsing

References

References

▪ OWASP .NET Project

https://www.owasp.org/index.php/Category:OWASP_.NET_Project

▪ .NET Security Cheat Sheet

https://www.owasp.org/index.php/.NET_Security_Cheat_Sheet

▪ Security Code Scan

https://security-code-scan.github.io/

https://www.owasp.org/index.php/Category:OWASP_.NET_Project
https://www.owasp.org/index.php/.NET_Security_Cheat_Sheet
https://security-code-scan.github.io/

Roslyn References

▪ .NET Compiler Platform ("Roslyn"): Analyzers and the Rise of Code-Aware
Libraries

https://www.youtube.com/watch?v=Ip6wrpYFHhE
▪ Roslyn Wiki
https://github.com/dotnet/roslyn/wiki
▪ Learn Roslyn Now: Part 10 Introduction to Analyzers by Josh Varty
https://joshvarty.wordpress.com/2015/04/30/learn-roslyn-now-part-10-
introduction-to-analyzers/
▪ .NET Compiler Platform SDK
https://marketplace.visualstudio.com/items?itemName=VisualStudioProduct
Team.NETCompilerPlatformSDK

https://www.youtube.com/watch?v=Ip6wrpYFHhE
https://github.com/dotnet/roslyn/wiki
https://joshvarty.wordpress.com/2015/04/30/learn-roslyn-now-part-10-introduction-to-analyzers/
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.NETCompilerPlatformSDK

.NET JSON Deserialization

▪ Ysoserial.net : Payload generator

https://github.com/pwntester/ysoserial.net

▪ Friday The 13th JSON Attack - White Paper

https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-
The-13th-JSON-Attacks-wp.pdf

https://github.com/pwntester/ysoserial.net
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf

Questions ?

Contact
parteau@gosecure.ca
gosecure.net/blog/
@h3xStream @GoSecure_Inc

