
<Modern XSS/>
The modern protections (and bypasses)

Philippe Arteau, Security Researcher

Who am I ?

▪ Philippe Arteau

▪ Security Researcher at GoSecure

▪ Open-source developer
▪ Security Guard (Roslyn – Static Analysis for .NET)

▪ Find Security Bugs (SpotBugs – Static Analysis for Java)

▪ Burp and ZAP Plugins (Retire.js, CSP Auditor)

▪ Volunteer for the conference and former trainer

Agenda

▪ Motivation and Overview

▪ Server Side Controls
▪ Template Engine
▪ ASP.net Request Validator
▪ Web Application Firewall

▪ Client Side Controls
▪ Chrome XSS Auditor
▪ IE/Edge XSS Filter

▪ Content Security Policy

▪ Conclusion

Motivation and Overview

Motivation

Why learn about XSS protections even if they come by default?

▪ Developers can be more efficient at:
▪ Troubleshooting client-side effect

▪ Working with - not against - the protections in place

▪ Avoid disabling protection on the first side effect

▪ Know about theirs limitations

Firefox XSS ... not yet

Which attack vectors are still
relevant for XSS in modern

web applications?

Chrome XSS Auditor

IE/Edge XSS Filter

Template Engine Escaping

ASP.net Request Validator

The Big Picture

Server-sideClient-side

Web Server

Browser

Web Applications

Every protection will be effective... but most of them have limitations.

Server-Side Controls

Template Engine

Server-sideClient-side

Web ServerBrowser Web Applications

Most template engine have HTML encoding by default
Edge cases:

• XSS Contexts
• Unquote attributes

Demonstration: Template engine /
XSS Contexts

Web Application Firewall (WAF)

Good luck guys!

We have Request
Validation ON !!Ah Ah !!

Web Application Firewall (WAF)

Server-sideClient-side

Web ServerBrowser Web Applications

• Decoupled from the application (context is often missing)
• Hard to understand request format such as JSON and XML.

• Regex patterns that take too long to process can be skipped /!\
• Transformation can lead to bypass

Request Validator (ASP.net)

Server-sideClient-side

Web ServerBrowser Web Applications

• First, don’t disable it globally
• Transformation can lead to Request Validator bypass
• Request Validator focuses on HTML context (not Javascript, attribute or CSS)

Request Validator (ASP.net)

▪ Request Validator is a filter applied before the controller handles the
parameters

▪ If a controller is transforming the value, the value may not be safe
▪ Base64 decoding

▪ URL decoding

▪ SQL Server ascii column

Character Character After storage

U+FF1C (%EF%BC%9C) U+003C (%3C) "<"

U+FF1E (%EF%BC%9E) U+003E (%3E) ">"

Ref: http://gosecure.net/2016/03/22/xss-for-asp-net-developers/

http://www.fileformat.info/info/unicode/char/ff1c/index.htm
http://www.fileformat.info/info/unicode/char/3c/index.htm
http://www.fileformat.info/info/unicode/char/ff1c/index.htm
http://www.fileformat.info/info/unicode/char/3e/index.htm
http://gosecure.net/2016/03/22/xss-for-asp-net-developers/

Client-Side Controls

Parameters Inspection…

bypass included

<img src=x onload=..

HTTP

Browser Filters

Server-sideClient-side

Web ServerBrowser Web Applications

• Does not apply to persistent XSS
• Transformations can often lead to filter bypasses
• Focus on the HTML and attribute contexts

Browser Filters: Adoption

▪ Mozilla Firefox
▪ Inexistent

▪ Internet Explorer 8+
▪ Active by default

▪ Google Chrome
▪ Active by default

▪ Additional configurations (X-XSS-Protection: 1)
▪ Mode=block: Stops the page loading if a malicious pattern is detected.

▪ Report=URL: (Chrome and Safari only) The browser will post the blocked
parameters to the URL

Chrome XSS Auditor (XSS Filter)

Chrome will not execute scripts that appear to have been reflected.

Request:

?input=<h1>Hello <script>alert(1)</script></h1>

Response: (highlighted value is not executed but remains in the DOM)

<h1>Hello <script>alert(1)</script></h1>

Chrome XSS Auditor (XSS Filter)

Chrome trusts resources that are hosted on the same origin (domain).

▪ <script src="//xss.lol/malicious.js"></script>

▪ <script src="/jsonp?callback=test"></script> (Exception)

▪ <script src="/api/users/files/23840238492.txt"></script>

Demonstration: Chrome XSS Filter

IE/Edge XSS Filter: How Does it Work?

IE and Edge will modify potentially malicious values that appear to
have been reflected.

Request:

?input=test" autofocus="" onfocus="alert(1)

Response:

< [...] value="test" % autofocus="" #nfocus="alert#1#" >

IE/Edge XSS Filter: Potential bypasses

▪ If the referrer is the same origin has the current page, it is consider
safe.

REDIRECT XSS

Demonstration: IE/Edge XSS Filter

Content Security Policy

Content Security Policy

Server-sideClient-side

Web ServerBrowser Web Applications

• Supported by all modern browsers
• Small adoption among web frameworks
• Hard to configure manually
• Mode “Report-Only” available

Common Misconfigurations

• ‘unsafe-inline’ misconfiguration

• ‘unsafe-eval’ may lead to DOM XSS

• Use of wildcards *

• Allowing CDN servers, googleapi.com, etc.

• Allow file upload on the same domain

• Use of deprecated header

• Unexpected inheritance from “default-src:”

Ref: http://gosecure.net/2016/06/28/auditing-csp-headers-with-burp-and-zap/

http://gosecure.net/2016/06/28/auditing-csp-headers-with-burp-and-zap/

Content Security Policy

HTTP/1.1 200 OK

Server: nginx

Date: Wed, 17 Feb 2016 19:34:43 GMT

Content-Type: text/html; charset=utf-8

Connection: close

x-xss-protection: 1; mode=block

content-security-policy: img-src https://* data: blob: ; connect-src https://* ws://127.0.0.1:*/ws ;
media-src https://* ; object-src https://cf.dropboxstatic.com/static/
https://www.dropboxstatic.com/static/ 'self' https://flash.dropboxstatic.com
https://swf.dropboxstatic.com https://dbxlocal.dropboxstatic.com ; default-src 'none' ; font-src
https://* data: ; frame-src https://* carousel://* dbapi-6://* itms-apps://* itms-appss://* ; style-
src https://* 'unsafe-inline' 'unsafe-eval' ; script-src https://ajax.googleapis.com/ajax/libs/jquery/
'unsafe-eval' https://www.dropbox.com/static/ https://cf.dropboxstatic.com/static/javascript/
https://www.dropboxstatic.com/static/javascript/ https://cf.dropboxstatic.com/static/api/
https://www.dropboxstatic.com/static/api/ https://www.google.com/recaptcha/api/ 'nonce-
yDqEXWDgP2zUUhD8Po0j' ;

x-content-type-options: nosniff

[…]

content-security-policy: img-src https://* data: blob: ; connect-src https://* ws://127.0.0.1:*/ws ;
media-src https://* ; object-src https://cf.dropboxstatic.com/static/
https://www.dropboxstatic.com/static/ 'self' https://flash.dropboxstatic.com
https://swf.dropboxstatic.com https://dbxlocal.dropboxstatic.com ; default-src 'none' ; font-src
https://* data: ; frame-src https://* carousel://* dbapi-6://* itms-apps://* itms-appss://* ; style-
src https://* 'unsafe-inline' 'unsafe-eval' ; script-src https://ajax.googleapis.com/ajax/libs/jquery/
'unsafe-eval' https://www.dropbox.com/static/ https://cf.dropboxstatic.com/static/javascript/
https://www.dropboxstatic.com/static/javascript/ https://cf.dropboxstatic.com/static/api/
https://www.dropboxstatic.com/static/api/ https://www.google.com/recaptcha/api/ 'nonce-
yDqEXWDgP2zUUhD8Po0j' ;

Demonstration: CSP

Conclusion

Guideline for Developers

▪ Use a modern template engine
▪ HTML encoding by default PLEASE!

▪ Encoding context is very important
▪ HTML != Attribute != CSS != JavaScript

▪ Be careful when allowing HTML from user

▪ Be careful with file uploads

▪ Transformation can often lead to filter bypasses

Keep in Mind...

▪ No protection layer will be bullet proof

▪ Defense in depth
▪ Avoid relying on a single layer

Server-sideClient-side

Web ServerBrowser Web Applications

References

Recommended reading..

▪ WASP: Cross-site Scripting (XSS)

▪ OWASP: XSS Filter Evasion Cheat Sheet

▪ XSS without HTML: Client-Side Template Injection with AngularJS by
Gareth Heyes James Kettle

▪ CSP 2015 by filedescriptor

▪ Bypassing ASP.NET ValidateRequest for stored XSS attack by
InfoSecAuditor

▪ XSS Auditor bypass / Another one by Gareth Heyes

▪ X-XSS-Nightmare: XSS Attacks Exploiting XSS Filter (IE/Edge) by
Masato Kinugawa

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://blog.portswigger.net/2016/01/xss-without-html-client-side-template.html
http://blog.innerht.ml/csp-2015/
https://infosecauditor.wordpress.com/2013/05/27/bypassing-asp-net-validaterequest-for-script-injection-attacks/
http://www.thespanner.co.uk/2015/02/10/xss-auditor-bypass/
http://www.thespanner.co.uk/2015/02/19/another-xss-auditor-bypass/
http://mksben.l0.cm/2015/12/xxn.html

More recommended reading..

▪ Revisiting XSS Sanitization by Ashar Javed

▪ UTF-7 XSS attacks in modern browsers (Security Stack Exchange)

▪ DOM Clobbering by Gareth Heyes

▪ Towards Elimination of XSS Attacks with a Trusted and Capability
Controlled. DOM by Mario Heiderich

▪ CSP Bypass using Angular and GIF by Mario Heiderich

https://www.blackhat.com/docs/eu-14/materials/eu-14-Javed-Revisiting-XSS-Sanitization-wp.pdf
http://security.stackexchange.com/questions/47489/utf-7-xss-attacks-in-modern-browsers
http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
https://heideri.ch/thesis
https://html5sec.org/cspbypass/

Questions ?

Contact
parteau@gosecure.ca
gosecure.net/blog/
@h3xStream @GoSecure_Inc

