
Philippe Arteau
Security Researcher at GoSecure

04/11/2017

Static-Analysis

Now you’re playing with power!

Hackfest 2017

Agenda

▪ Definitions
▪ Motivation
▪ Different levels of sophistication
▪ Internals and applications

▪ AST based analyzer
▪ Taint analysis
▪ Continuous integration
▪ Automate code refactoring

▪ Additional considerations

▪ Expect multiple demos !

Who Am I ?

▪ Philippe Arteau

▪ Security Researcher at GoSecure

▪ Open-source developer
▪ Find Security Bugs (SpotBugs - Static Analysis for Java)

▪ Security Guard (Roslyn – Static Analysis for .NET)

▪ Burp and ZAP Plugins (Retire.js, CSP Auditor)

▪ Volunteer for the conference and former trainer

Definition

Definition

Static Analysis is

▪ “The analysis of computer software that is performed without
actually executing programs”

In the context of this presentation

▪ Finding vulnerabilities by looking at the code

(with the help of tools)

Motivation..

Why should you use it?

Motivation

Why would I use Static Analysis?

▪ High coverage of the application code

▪ Quick discovery in the development lifecycle

▪ Identification of the source of the problem not just the symptoms

Limitations

▪ Low coverage of the infrastructure code

▪ False positives
▪ Exploitability is always an estimate

▪ Many vulnerability classes are not covered
▪ Misconfigurations

▪ CSRF vulnerabilities

▪ Logic flaws

Scope

Coverage

Different levels of
sophistication

Techniques

Techniques Description / Behavior

Pattern Matching • Analog to grep

Abstract Syntax Tree • Parsing of the code base
• Inline heuristic

Data-Flow Analysis • Simulation of the execution
• Tainted analysis

Inter-procedural Data-Flow Analysis • Taint tracking across function
(procedure)

Techniques overview

Inter-
procedural

DFA

Reduction of
False Positives

Analysis Time

Pattern
Matching

Abstract
Syntax Tree

Data-flow
Analysis

(DFA)

Abstract Syntax Tree
Based Analyzer

Demonstration Bandit

▪ https://github.com/openstack/bandit

Bandit

DEMO

https://github.com/openstack/bandit

Abstract Syntax Tree

Definition
Tree representation of the abstract syntactic structure of the
source code

Source files Lexer Parser AST

Abstract Syntax Tree

Abstract Syntax Tree main features:

▪ Handling of spacing and nested method calls
▪ Take away the complexity regex to handle spaces, indentation, new lines, etc.

▪ Resolution of types (optional – depends of the language)
▪ Allow matching of the class name not just method

▪ Possibility to do some heuristic on the inline value
▪ This means less false positives

Abstract Syntax Tree

Roslyn AST : https://msdn.microsoft.com/en-us/magazine/dn904670.aspx

https://msdn.microsoft.com/en-us/magazine/dn904670.aspx

Basic AST Analysis

ObjectCreationExpression

IdentifierName
(“RSACryptoServiceProvider”)

NumericLiteralExpression
(1024)

Arguments

var rsa = new RSACryptoServiceProvider(1024);

Symbolic Execution and
Taint Analysis

How can we find values need to a reach specific path?
(programmatically)

Symbolic execution

def quiz(int a, int b) {

c = a*6

if(c + b < 50) {

if(a-40 == b) {

if(a + b > 0) {

//How to get here?

}

}

}

}

Symbolic execution

Simulating the code execution using
expression rather than concrete
data

To determine how to reach specific
code location, conditions must be
transform in mathematical
equation.

a = <input1>

b = <input2>

if (b - 1 > 2)

c = b * 2

a += “def" a += "zzz"

a += "0123"

FalseTrue

(input2 * 2) - 1 > 2

Reference : Symbolic Execution for Software Testing: Three Decades Later

https://people.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

Symbolic in action

a b c

input1+44 input2 input2*2

a b c

input1+44 input2 input2*2

input1+45 input2 input2*2

a b c

input1

a = <input1>

b = <input2>

if (b - 1 > 2)

c = b * 2

a = a * 8 a += 44

a += 1

FalseTrue

a b c

input1

input1 input2

a b c

input1

input1 input2

input1 input2 input2*2

a b c

input1*8 input2 input2*2

a b c

input1*8 input2 input2*2

input1*8+1 input2 input2*2

(b - 1 > 2) == true

(b - 1 > 2) == false

Symbolic execution mainly focuses on resolving input values to reach a
specific path

Many vulnerabilities analyzers need to monitor validation state of
variables. One additional concept is needed…

Taint analysis

False Positive vs Real Positive

▪ Safe

a = "userId = "

b = "1"

c = a + b

User.applyFilter(c)

▪ Unsafe

a = "userId = "

b = getHttpParameter("uid")

c = a + b

User.applyFilter(c)

CONSTANT + TAINTED
=

TAINTED

Taint analysis in Find Security Bugs

a = "userId = "

b = getHttpParameter(" uid ")

c = a+b

User.applyFilter(c)

a b c

CONSTANT

a b c

CONSTANT

CONSTANT TAINTED

a b c

CONSTANT

CONSTANT TAINTED

CONSTANT TAINTED TAINTED

Pseudo-code evaluate

State of symbolic variables

Taint analysis in Find Security Bugs

Base state

▪ Tainted : Unsafe user input

▪ Unknown : Value from unknown source. It could be coming from user
input

▪ Safe : Dynamic value from a safe source

▪ Constant : Hardcoded value

Context specific state (tags):

▪ XSS Safe, SQL Safe, XML Safe, URL Safe, etc.

Demo Android APK analysis

dex2jar

▪Tools available

DEMO

Obstacles of Symbolic Execution

Is this code vulnerable?

class Sample {

def sql = new Sql(datasource)

def getUserById(int userId) {

return getUserId(userId)

}

def getUserById(String userId) {

return sql.execute("SELECT * FROM Users WHERE uid="+userId)

}

}

More Obstacles

Other obstacles that static analyzers must consider:

Reflection

Dependency injection

Second order vulnerability

Encapsulation

Continous Integration

Brakeman CLI

Before continuing .. Here’s a new tool that analyze Ruby applications.

Brakeman

▪ Target mainly Rails API

▪ 67 rules and growing

▪ https://brakemanscanner.org/
DEMO

https://brakemanscanner.org/

Continuous integration

Continuous Integration (CI):

▪ The practice of merging all developer working copies to a shared
mainline several times a day.

▪ The most basic form will include compiling the application
▪ Additional tasks such as running tests and code analysis can be added

▪ Most static-analysis tool integrate with Continuous integration

Deployment stategy

Manual Code
Review

Code Review
Assisted by a

tool

Continuous
integration

• Usually implemented in this order.
• One deployment does not replace another

Continuous integration in action

▪ Demonstration with Brakeman ran from a Jenkins instance

▪ Job configuration
▪ Brakeman command

▪ Post Build Jenkins Plugin

DEMO

Customize the package available
from Jenkins Jobs

Mount main Jenkins folder for easy
backup and migration

Continuous integration : Jenkins + Docker

▪ How easy can it be to deployed ?

version: '2'
services:

jenkins:
build: .
ports:

- 8080:8080
volumes:

- ./jenkins_home:/var/jenkins_home

FROM jenkins/jenkins:lts

USER root
RUN apt-get update &&

apt-get install -y ruby rubygems &&
gem install brakeman

USER jenkins

docker-compose.ymlDockerfile

Automate code refactoring

Automate code refactoring

▪Identifying bugs and vulnerabilities is nice but…

Automate code refactoring

▪Providing fix is even better!

▪Some vulnerabilities require high-level
understanding of the application.

Ctrl-dot

Additional considerations

How to evaluate tools?

▪ WASC Static-Analysis Technologies Evaluation
Criteria

Samples
▪ Juliet Test Suite (Java and C++)
▪ OWASP Benchmark (Java)
▪ Used vulnerable applications

▪ OWASP_Vulnerable_Web_Applications_Directory_Project
▪ See Juliet Test Suite Page

▪ Make your own vulnerable samples
▪ Required good security expertise

http://projects.webappsec.org/w/page/66094278/Static Analysis Technologies Evaluation Criteria
https://samate.nist.gov/SRD/testsuite.php
https://github.com/OWASP/benchmark
https://www.owasp.org/index.php/OWASP_Vulnerable_Web_Applications_Directory_Project#tab=Off-Line_apps

Building your own tools

▪Do not reinvent the wheel
▪Reuse existing static analysis tools (if available)
▪Search for more than one tool for comparison
▪Reuse existing lexer/parser libraries

▪Thinking about the maintenance of your custom rules
▪Do you have the time to maintain those?
▪Will your colleague be able to troubleshoot them?

Questions ?

Contact
parteau@gosecure.ca
gosecure.net/blog/
@h3xStream @GoSecure_Inc

References

Tools Presented

▪ Openstack Bandit (Python)

▪ Brakeman (Ruby)

▪ Find Security Bugs (Java, Scala, Groovy)

▪ .NET Security Guard (C# and VB.net)

https://github.com/openstack/bandit
http://brakemanscanner.org/
https://find-sec-bugs.github.io/
https://dotnet-security-guard.github.io/

Useful resources

▪ NIST SAMATE Project :
▪ Source Code Security Analyzers

▪ Byte Code Scanners

Books

▪ Brian Chess et Jacob West, Secure Programming
with Static Analysis, 2007, Addison-Wesley

▪ Gary McGraw, Software Security: Building
Security In, 2006, Addison-Wesley

http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://samate.nist.gov/index.php/Byte_Code_Scanners.html

Samples for Tools evaluation

Samples

▪ Juliet Test Suite (Java and C++)
▪ https://samate.nist.gov/SRD/testsuite.php

▪ OWASP Benchmark
▪ https://github.com/OWASP/benchmark

▪ Used vulnerable applications
▪ https://www.owasp.org/index.php/OWASP_Vulnerable_Web_Applications_Directory

_Project#tab=Off-Line_apps

Criteria

▪ WASC Static-Analysis Technologies Evaluation Criteria

https://samate.nist.gov/SRD/testsuite.php
https://github.com/OWASP/benchmark
https://www.owasp.org/index.php/OWASP_Vulnerable_Web_Applications_Directory_Project#tab=Off-Line_apps
http://projects.webappsec.org/w/page/66094278/Static Analysis Technologies Evaluation Criteria

