
Enumerating PE File Structure Security and Custom Base 64 Steganography

PE File Structure Security Enumeration

AtlSecCon - 2016

To my mentors, without them I wouldn't be here today.

 Travis Barlow

 Kathryn Dumke

Special Thanks

Who is the new girl?

 We will be doing pictures

 They are faster than words trust me

Introduction

Who I think I am

What I really am

What my family thinks I do
Me Apparently

What I actually do

Disclaimer

Presentation Legal Notes

 This presentation is for informational purposes only

 Use this information at your own risk

 I won't bail you out of jail

 This presentation does not reflect the views or

interests of GoSecure

PE File Structure

The Ground Rules

 When we talk about PE File Structures we will be

referring directly to DLLs (Dynamic Link Libraries)

 We are only interested in gaining information to

leverage an exploit on a particular application, all other

information we can leave behind

 Slides and PE File Structure Security Roadmap will be

available on GitHub after the presentation

 I'm in no way responsible for your actions based on

the information presented today

PE File Structure

What can this be used for?

 Analysis of Malware

 Enumerate Security Protections

 Securing Vendor Applications without Source

 Exploit Development

PE File Structure

High Level Overview

 Microsoft moved to the PE file

format for their executable in

Windows NT 3.1 (DOS Header)

 It has retained legacy support

 This is where we find data for

typical segments when reverse

engineering .text, .data, etc.

PE File Structure

Going into more detail...

 Our main focus is in the

IMAGE_NT_HEADERS

Section

 Take note of how we get

pointers to each respective

section in the binary from

the headers

 .data and .text

PE File Structure

Going Deeper

 We will be looking for the Export Names table

 Then we will use a few functions of windows.h to

help use extract their location in memory when

loaded

 I will then go over a algorithm that can extract

how many bits of entropy we are dealing with

 Before we begin we must know the difference

between a RVA and a Raw Address.

PE File Structure

RVA and Raw Pointers

 RVA (Relative Virtual Address) – The address

of an item after it's loaded into memory

 If there is a difference between the RVA and

Pointer to Raw Data then we must take their

difference into consideration

 Now let's zoom in closer to the file structure

PE Security Road Map

How you probably feel right now

Break it down!

PE Security Road Map

IMAGE_NT_HEADERS

Forgetting the DOS Header

IMAGE_NT_HEADERS

IMAGE_FILE_HEADER

 Contains the generic information

about the PE file

 Machine contains information

on the architecture

 Number of

Sections, .text, .data, .edata, etc.

IMAGE_NT_HEADERS

IMAGE_FILE_HEADER → Machine

 Example of the values

that can be in the machine

entry

 Checking these with bit

masking is a good plan

 We are only concerned

with x86 for this

presentation

IMAGE_NT_HEADERS

IMAGE_OPTIONAL_HEADER

 Contains information that

pertains to security

enumeration

 DllCharacteristics (ASLR,

DEP, SEH)

 Address of Entry Point

 Reserve for the Heap and

the Stack

IMAGE_NT_HEADERS

IMAGE_OPTIONAL_HEADER → DllCharacteristics

 ASLR

 DEP/NX

 SEH

IMAGE_NT_HEADERS

DllCharacteristics → The Code

 Bit masking

 Structs

 If/else logic

IMAGE_NT_HEADERS

IMAGE_DATA_DIRECTORY (within optional header)

 Several of these stacked

together create a list of

offsets to different tables

 Using this we can find the

IMAGE LOAD CONFIG

DIRECTORY and the

IMAGE EXPORT

DIRECTORY

IMAGE_SECTION_HEADER

IMAGE_SECTION_HEADER

 The number of these in the

file are based on the

number of sections that

were talked about before

 VirtualAddress,

SizeOfRawData,

PointerToRawData

IMAGE_LOAD_CONFIG_DIRECTORY

 SecurityCookie

 SEHandlerTable

 SEHandlerCount

IMAGE_LOAD_CONFIG_DIRECTORY → GetProcAddress()

Pay Dirt!

LoadLibrary(FileName)

IMAGE_LOAD_CONFIG_DIRECTORY → LoadLibrary()

Back to the PE Security Road Map

Enumerating DLL Function Calls

Enumerating DLL Function Calls

Enumerating DEP, SEH, and ASLR

Enumerating DEP, SEH, and ASLR

ASLR Entropy Algorithm

ASLR Entropy Algorithm

Loading and Unloading

Bit Masking

ASLR Entropy Algorithm

Print Flipped Nibbles

Calculate Entropy

ASLR Entropy Algorithm

Setting the Limitations

 Currently only works on libraries that aren't currently

loaded into memory as kernel32.dll and user32.dll

only change addresses upon reboot as they are

loaded into memory on boot.

 Only x86 at this time

 Use as much itterations as you like however don't let

your computer get hot enough to catch fire or fry eggs

(this totally didn't happen to me)

 Suggestions are welcome after the talk

Badger Demo

GCC DEP/NX and SSP Protections Overview

Exploitation Knowledge Base

 Canaries

 Smashing Stack Protection (SSP)

 --fno-stack-protector disables the feature

 Default since GCC 4.1

 DEP/NX

 Data Execution Prevention

 Non-Executable Stack

 -z execstac disables the feature

 Default since GCC 4.1

 ASLR

 Address Space Layout Randomization

 Kernel Level

Exploitation Knowledge Base

 Used to overwrite eip/rip

 Avoid null bytes for code execution

 Happens when a buffer receives too much data

and proper error checking isn't present

 Allows an attacker to obtain code execution or

remote code execution

 Can be used for privledge escalation

Smashing the Stack

Exploitation Knowledge Base

 Buffer starts at c[0]

 Buffer ends at c[11]

 Pointer to char *bar

 Saved Frame Pointer (ebp)

 Return Address (eip)

 Step through the process

Smashing the Stack

Exploitation Knowledge Base

 Normal buffer

 '\x00' / null / terminator

 Return Address (eip) OK

 Normal execution

Smashing the Stack

Exploitation Knowledge Base

 Control User Input

 Enter too much data

 Check for security controls

 Find offset of eip/rip

 Addresses stored in memory

are in Little Endian format

 Point to your code

Smashing the Stack

Smashing The Stack → Example Code

Exploitation Knowledge Base

 No error checking

 Argv[1] moved into

buffer with no check

if size is over 256

bytes

 Vulnerable to

overflow

Smashing The Stack → Bypassing DEP

Exploitation Knowledge Base

 Since DEP (Data

Execution Prevention)

makes certain parts of

memory NX how can we

bypass this?

 Feel free to shout your

answers to me!

Hmmm...

Smashing The Stack → Bypassing DEP

Exploitation Knowledge Base

 DLLs → (why can we use

this?)

 Why can we use the

Program Image?

 What instructions are

useful to us?

 What technique is it

called?

Hmmm...

Smashing The Stack → Bypassing DEP with ROP

Exploitation Knowledge Base

 Before the overflow

Smashing The Stack → Bypassing DEP with ROP

Exploitation Knowledge Base

 After the overflow

 In this case we used a bogus

return address

 '\x41' is = 'A'

 How do we chain this together?

Smashing The Stack → Bypassing DEP with ROP

Exploitation Knowledge Base

 We can chain these together

using pop-ret or pop-pop-ret or

any combination of pop-ret

 We use these pop-ret sections

from parts of the memory space

that is marked executable

 These little pieces of code are

called ROP Gadgets

Smashing The Stack → Bypassing DEP with ROP

Exploitation Knowledge Base

 The code to jmp esp works as

well if DEP is only enabled for

Windows Services or a library

has protection disabled.

 Code: jmp esp = '\xff\xe4'

 Code: pop esp; ret; = '\x5c\xc3'

 Same idea however not

chaining multiple gadgets

What is TEBs and PEB?

Exploitation Knowledge Base

 TEB – Thread

Environment Block

 PEB – Process

Environment Block

 Let's go over what these

blocks contain as well
TEB/PEB

What is TEB and PEB, how do I access them?

TEB and PEB Overview

 This isn't required knowledge

 Since it's part of memory space we will briefly

touch on the subject

What is TEB, how do I access it?

Accessing TEB

 TEB is simply a data

structure that hold

information about the

current thread.

 Here is an example of

how to get the pointer to

TIB

 Let's have a look at what

TIB contains

Accessing TEB

Accessing TEB

What is PEB, how do I access it?

Accessing PEB

 PEB – is a data structure that is opaque. It's used

internally by the Windows Operating System itself

 Handles Mutual Exclusion

 Close to EPROCESS or Kernel Space

 Pointer located inside TEB

Accessing PEB

Make Way for the Shellcode

Make Way!

Making Space for your Shellcode

 VirtualAlloc(MEM_COMMIT + PAGE READWRITE

EXECUTE) + copy memory

 Allows creation of new executable memory

region, now copy your shellcode to it, and

execute

 HeapCreate(HEAP_CREATE_ENABLE_EXECUTE) +

HeapAlloc() + copy memory

 A very similar technique to VirtualAlloc()

Make Way!

Making Space for your Shellcode

 SetProcessDEPPolicy()

 Changes DEP policy for the current process

(Vista SP1, XP SP3, Server 2008, and only when

DEP Policy is set to OptIn or OptOut)

 NtSetInformationProcess()

 Changes the DEP policy for the current process

Make Way!

Making Space for your Shellcode

 VirtualProtect(PAGE_READ_WRITE_EXECUTE)

 Change the access protection level to executable

of a given memory page.

 WriteProcessMemory(). Copies shellcode to another

executable location, jump to it and execute. (Must be

a writable executable)

Choose your Weapon

Choose your Weapon

VirtualProtect() Overview

Starting Address Pointer

Size of Shellcode

Protection Options

A Place to Save your Settings
*A Writable Memory Location

ROP Demo

Chameleon Demo

Questions?

